East Midlands Gateway Phase 2 (EMG2)

Document DCO 6.14F/MCO 6.14F (Part 3 of 6)

ENVIRONMENTAL STATEMENT

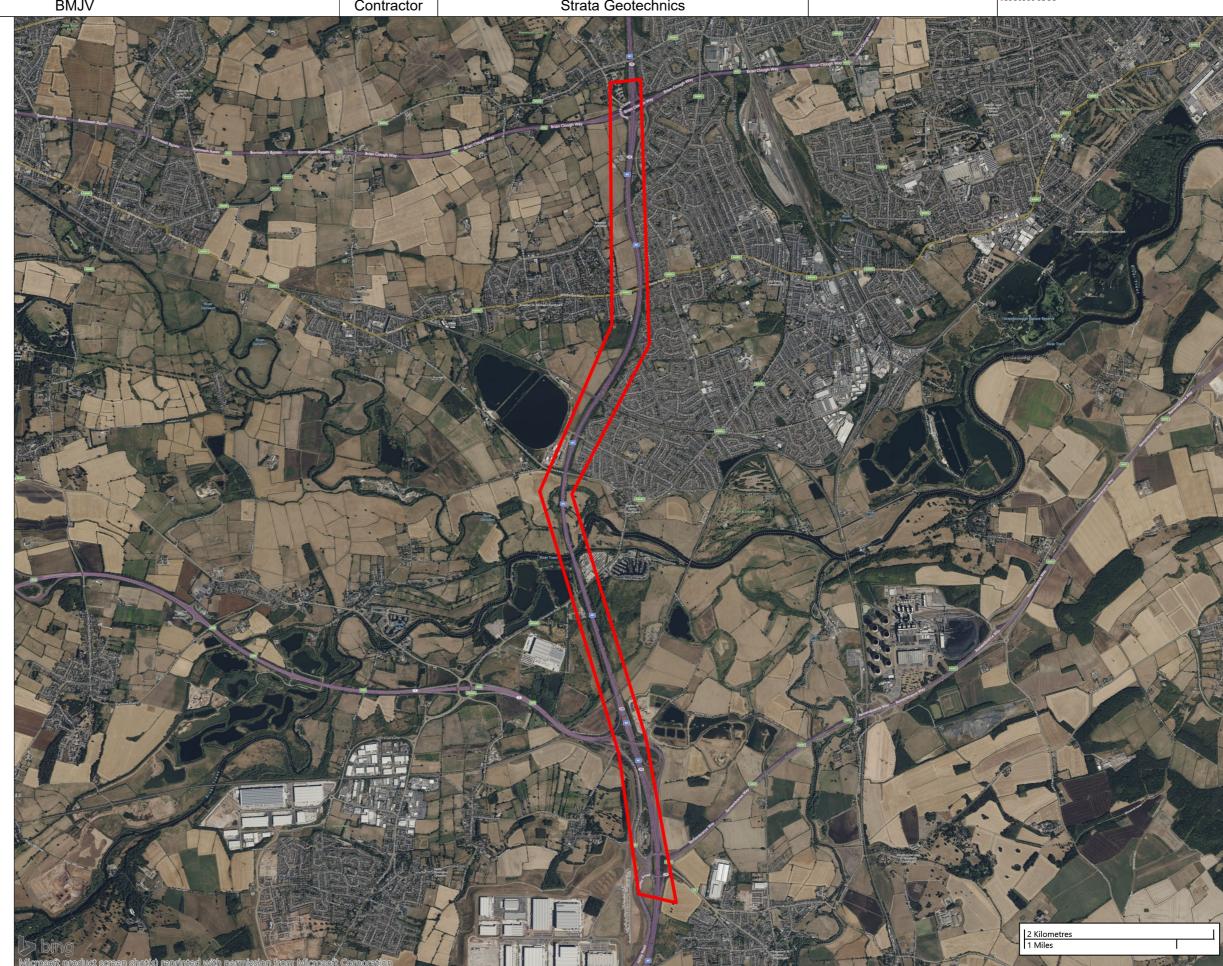
Technical Appendices

Appendix 14F

Preliminary Sources Study Affecting National Highways

October 2025

The East Midlands Gateway Phase 2 and Highway Order 202X and The East Midlands Gateway Rail Freight and Highway (Amendment) Order 202X



Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:40000
Location:		Engineer	Jade Baxter
Client:	BMJV	Contractor	Strata Geotechnics

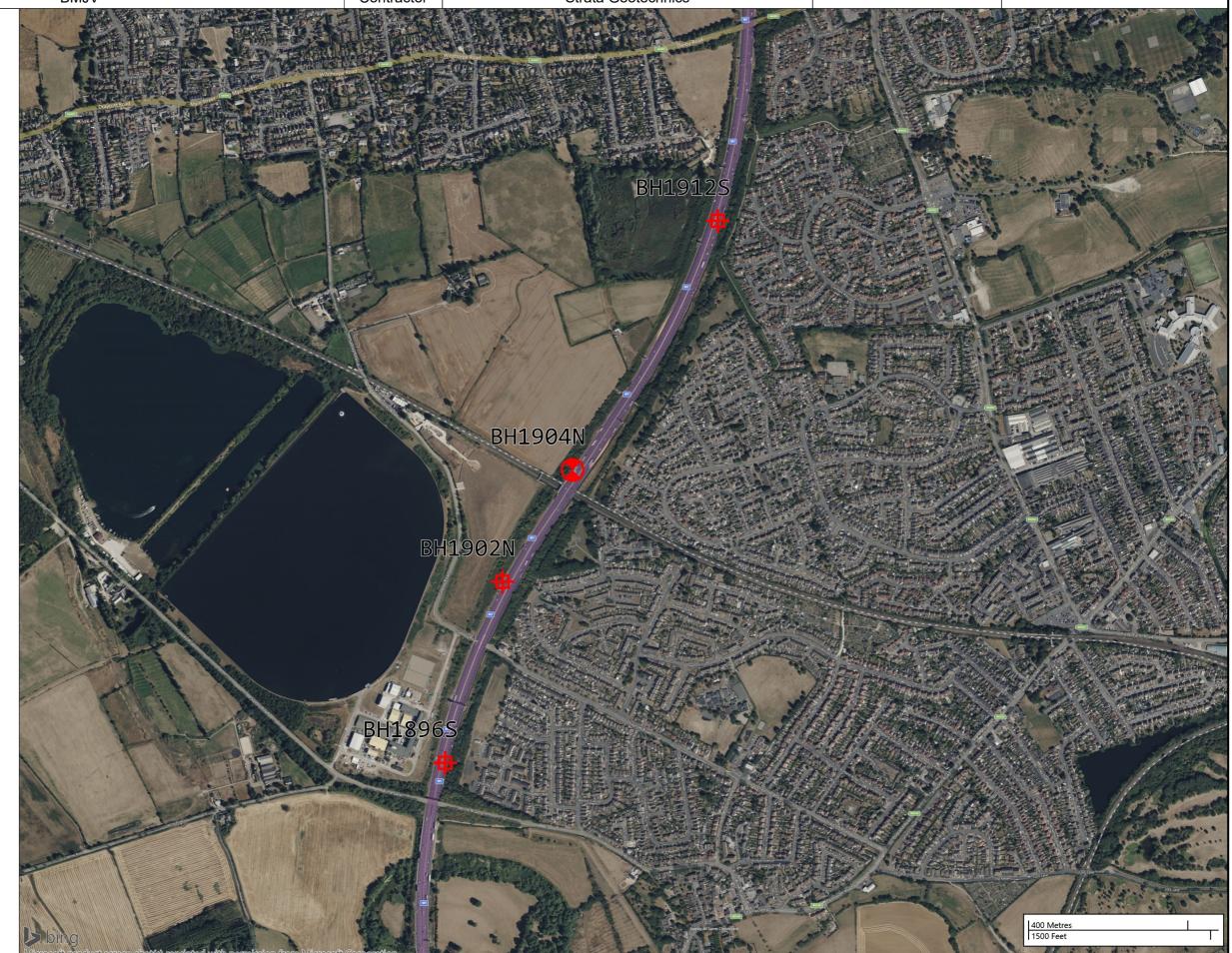
Project Bounds - Project Bounds

Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:40000
Location:		Engineer	Jade Baxter
Client:	BMJV	Contractor	Strata Geotechnics

- **b** Locations By Type WLS

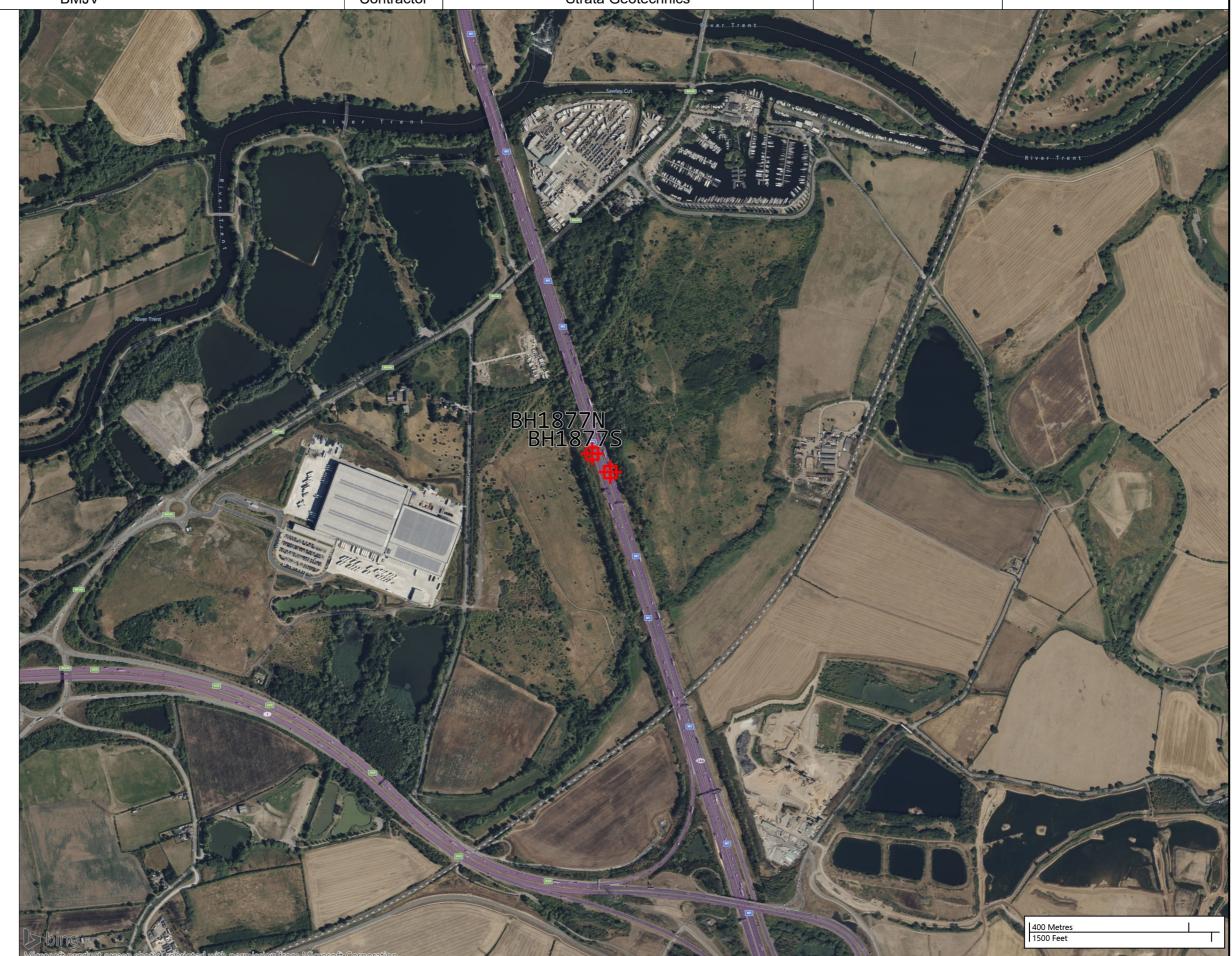
Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:9500
Location:	M1 J23A-J25	Engineer	Jade Baxter
Client:	BMJV	Contractor	Strata Geotechnics

- **b** Locations By Type WLS



Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:9500
Location:	M1 J23A-J25	Engineer	Jade Baxter
Client:	BM.IV	Contractor	Strata Geotechnics

- **b** Locations By Type WLS
- ♣ Locations By Type WS+RC



Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:9500
Location:	M1 J23A-J25	Engineer	Jade Baxter
Client:	RM.IV	Contractor	Strata Geotechnics

- **b** Locations By Type WLS

Project ID:	G230600	Title	Site Plan
Project Title:	M1 J23A-J25	Scale	1:9500
Location:	M1 J23A-J25	Engineer	Jade Baxter
Client:	BMJV	Contractor	Strata Geotechnics

- **b** Locations By Type WLS

Appendix B: Exploratory Hole Records

Rev 002

Legends:

U Undisturbed driven tube sample, 100mm nominal diameter unless noted

UT Undisturbed thin wall tube sample, 100mm nominal diameter unless noted

P Undisturbed pushed piston sample, 100mm nominal diameter unless noted

CBR CBR mould sample

BLK Block sample

D Small disturbed sample

B Disturbed bulk sample

SD Standard Penetration Test liner sample

ES Soil sample for environmental testing

W Water sample

L Liner, dynamic/windowless sample

C Core sample

CSS Core sub sample

Test results

N (S) Standard penetration test, split spoon sampler (uncorrected)

N (C) Standard penetration test, solid cone (uncorrected)

K Field permeability test, kFH indicates falling head, kPI indicates packer injection

HV Hand vane test [peak/residual], kPa, Undrained Shear Strength

I_a or I_d Point load strength quoted for axial (a) and diameter (d), MPa Point Load Index

PP Pocket Penetrometer, kPa, Unconfined Compressive Strength

LMP Lump sample for laboratory testing

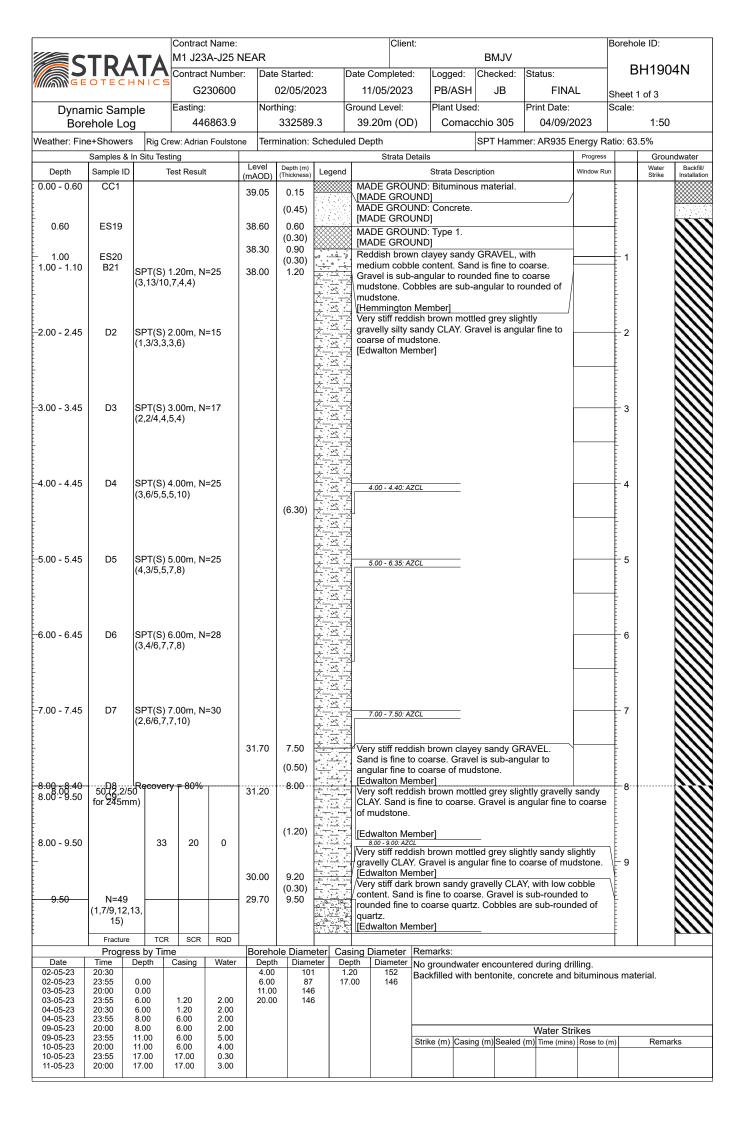
Non-Intact Core recovered in sections less than one full diameter without signs of weathering

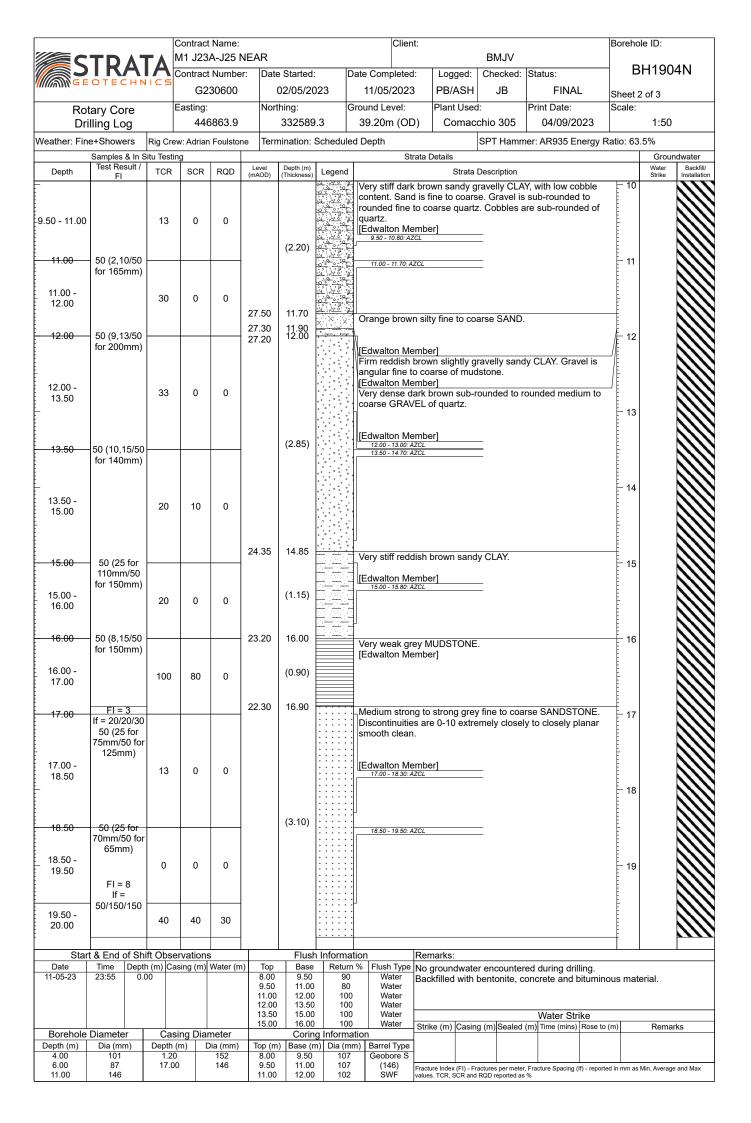
Soil, Rock and Backfill Legends:

Rev 002 i | Page

_			
Topsoil	<i>"///////</i>	MADE GROUND	
Concrete		Bituminous Material	
Clay		Silt	$\times \times $
Sand		Gravel	583.80
Cobbles	0 m 0 e 0.	Peat	who who who to ship who s
Sandstone		Mudstone	
Siltstone	******	Coal	
Breccia	38888	Fine grained Igneous	XXXX
Limestone		Medium grained Igneous	+ + + + +
Conglomerate	00000	Coarse grained Igneous	+ + + + +
Clean Ballast	3333	Fine grained Metamorphic	
Slightly dirty Ballast		Medium grained Metamorphic	
Dirty Ballast	333333	Coarse grained Metamorphic	
Broken Ground	00000000	No Recovery	NR NR NR NR NR
Cement Bentonite		Bentonite	
Arisings		Grout	

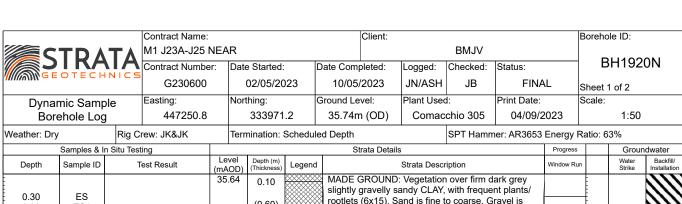
Rev 002 ii | Page


Contract Name: Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1851S ontract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 28/06/2023 30/06/2023 PΒ **FINAL** JB Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 447553.8 327409.2 39.54m (OD) Comacchio 305 04/09/2023 1:50 Weather: Showers+Fine Rig Crew: Ian Mountain Termination: Refusal SPT Hammer: AR666 Energy Ratio: 65% Samples & In Situ Testing Strata Details Groundwater Backfill/ TCR SCR RQD FI/If Test Result egend 0.00 - 0.80 CC6 39.41 MADE GROUND: Bituminous material. 0.13 [MADE GROUND] MADE GROUND: Concrete bound material. [MADE GROUND] (1.17)SPT(C) 1.20m 38.24 1.30 N=31 (8,8/9,7,7,8) Soft to firm orangish brown slightly sandy slightly gravelly (0.40)CLAY. Sand is fine to medium. Gravel is fine to coarse 1.20 - 2.00 L11 angular to sub-rounded quartz, chert and rare 37.84 1.70 sandstone [Edwalton Member] Firm orangish brown mottled greyish brown sandy CLAY. Sand is fine to medium. 2.00 - 2.45 D1 SPT(S) 2.00m, 2 2.00 - 2.45 ES20 N=19 (5,5/4,4,6,5) [Edwalton Member] 2.00 - 3.00 L12 (2.50)SPT(S) 3.00m, 3.00 - 3.45 D2 3 N=20 (3,3/4,4,6,6) 3.00 - 4.00 L13 4.00 - 4.45 D3 SPT(S) 4.00m, 4 N=21 (4,4/4,4,6,7) 35.34 4.20 Firm greyish brown very sandy friable CLAY. Sand is fine to medium. 4.00 - 5.00 L14 (0.70)[Edwalton Member] 4.90 34.64 Stiff orangish brown mottled greyish brown sandy friable SPT(S) 5.00m, 5.00 - 5.45 Π4 5 N=24 (4,4/4,5,7,8) CLAY. Sand is fine to medium. [Edwalton Member] 5.00 - 6.00L15 6.00 - 6.45 D5 SPT(S) 6.00m, 6 N=24 (4,5/5,5,7,7) 6.00 - 7.00L16 7.00 - 7.45 D7 SPT(S) 7.00m, 7 7.00 - 8.00 B17 N=37 (10,10/10,10,8,9)(4.88)8.00 - 8.45 SPT(S) 8.00m, D8 8 8.00 - 9.00 N=42 B18 (9,9/11,10,10,11) SPT(S) 9.00m, 50 (25 for 76mm/50 9.00 - 9.229 D9 9.00 - 9.60 B19 for 144mm) SPT(S) 9.60m, 50 9.60 - 9.78D10 (25 for 79mm/50 29.76 9.78 End of Borehole at 9.78m for 100mm) Flush Return Information Start & End of Shift Observations Remarks: Top Base Min % Max % Type Colour Time Depth (m) Casing (m) Water (m) No groundwater encountered during drilling. 28-06-23 20:00 Backfilled with bentonite, concrete and bituminous material. 28-06-23 23:55 7.00 3.00 7.00 9.78 3.00 3.00 29-06-23 20:00 29-06-23 23:55 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Borehole Diameter Casing Diameter Coring Information Depth (m) Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Dia (mm) Dia (mm) Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)

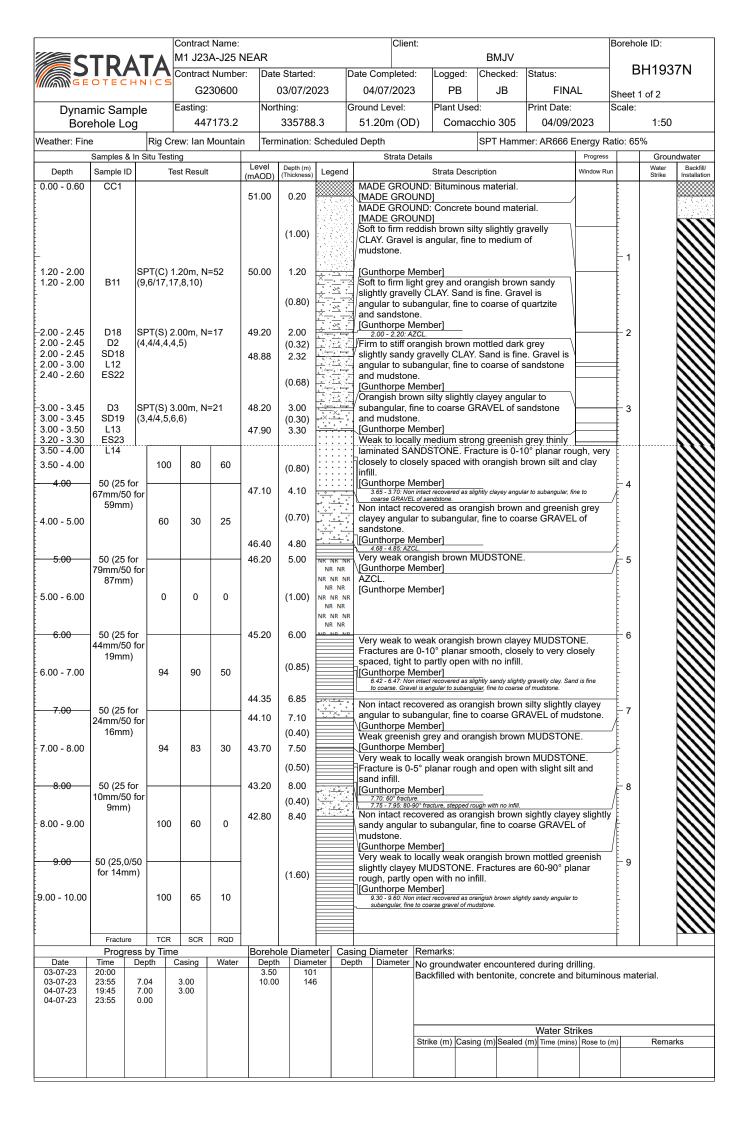

Contract Name: Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1877N Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 01/06/2023 02/06/2023 JN/ASH JB **FINAL** Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 446863.5 330029.2 33.71m (OD) Comacchio 305 04/09/2023 1:50 Weather: Fine Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Samples & In Situ Testing Strata Details Groundwater Backfill/ Test Result TCR SCR RQD FI/If 0.00 - 1.00 CC1 MADE GROUND: Black bituminous material. 33.51 0.20 [MADE GROUND] (0.30)MADE GROUND: Concrete bound material. [MADE GROUND] 0.50 D13 33.21 0.50 0.50 **ES11** MADE GROUND: Grey slightly sandy GRAVEL, Sand is (0.50)fine to coarse. Gravel is angular to sub-angular fine to coarse of quartzite. 1.00 ES12 32.71 1.00 [MADE GROUND] Firm brown slightly sandy slightly gravelly CLAY. Sand is 1.20 - 1.65 D2 SPT(S) 1.20m, 32.51 1.20 N=19 fine. Gravel is sub-rounded to rounded fine to medium of 1.40 - 1.50 D14 (10,4/4,5,5,5)quartzite. 1.50 - 1.70 **ES15** [Hemmington Member]
Stiff reddish brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular fine to coarse of (1.00)2.00 - 3.00 D16 2 2.00 - 3.00 ES17 SPT(S) 2.20m. 31.51 2.20 [Hemmington Member] 2.20 - 2.65D3 N=30 (8,8/9,8,8,5) Dense dark brown clayey sandy angular fine to coarse GRAVEL of quartz and siltstone. Sand is fine to coarse. [Hemmington Member] SPT(S) 3.00m, 3.00 - 3.41D4 3 3.00 - 4.00 B19 N=31 (25 for 3.00 - 4.00 D18 110mm/14,6,6,5) (2.30)4.00 - 4.20 D20 SPT(S) 4.00m, 4 4.00 - 4.45 D5 N=30 (7,8/2,9,9,10)4.50 - 4.70 D21 29.21 4.50 Stiff greyish brown sandy gravelly CLAY. Sand is fine to 4.70 - 5.00 D22 4.70 29 01 coarse. Gravel is sub-rounded to rounded fine to coarse (0.30)of quartz and mudstone. 5 00 - 5 45 SPT(S) 5.00m, [Hemmington Member] D6 28 71 5.00 5 N=35 (3,8/8,8,8,11) Reddish brown slightly gravelly silty fine to coarse D23 5.00 - 6.00SAND. Gravel is sub-angular to rounded fine to coarse of quartz and sandstone. (1.00)[Hemmington Member] Dense dark brown clayey gravelly fine to coarse SAND. Gravel is sub-angular to rounded fine to coarse of quartz and sandstone. 6.00 - 6.45 D7 SPT(S) 6.00m 27.71 6.00 6 [Hemmington Member]
Medium dense to dense dark brown clayey sandy N=27 (5,6/6,6,7,8) GRAVEL. Sand is fine to coarse. Gravel is sub-angular to rounded fine to coarse of quartz and sandstone. [Hemmington Member] 7.00 - 7.45 D8 SPT(S) 7.00m, 7 7.00 - 8.00: Very sandy 7.00 - 8.00 B25 N=21 (8,9/4,4,6,7) 7.00 - 8.00D24 8.00 - 8.45 SPT(S) 8.00m, (4.00)D9 8 8.00 - 9.00 N=22 (1,4/7,7,5,3) D26 9.00 - 10.00 SPT(S) 9.00m. D27 9 9.00 - 9.45 D10 N=45 (5,8/9,11,13,12) 23.71 10.00 End of Borehole at 10.00m Start & End of Shift Observations Flush Return Information Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 20:00 01-06-23 Backfilled with bentonite, concrete and bituminous material. 01-06-23 23:55 0.00 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Dia (mm) Depth (m) Dia (mm) 101 7.00 87 77 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep. as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)

Contract Name: Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1877S Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 14/06/2023 15/06/2023 PB/ASH **FINAL** JB Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 446908.7 329983.3 33.52m (OD) Comacchio 305 04/09/2023 1:50 Weather: Fine Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Strata Details Samples & In Situ Testing Groundwater Backfill/ TCR SCR RQD FI/If Test Result 0.00 - 1.00 CC1 MADE GROUND: Bituminous material 0.20 33.32 [MADE GROUND] MADE GROUND: Concrete bound material. [MADE GROUND] (1.00)SPT(C) 1.00m, 50 (2,16/50 for 90mm) 32.32 1.20 Very stiff dark brown slightly gravelly sandy CLAY. Sand is fine to coarse. Gravel is angular fine to coarse of 1.50 - 1.60 D2 sandstone and mudstone. 1.80 - 2.00 ES3 (1.30)[Hemmington Member] SPT(C) 2.00m, 50 2 (9,13/50 for 150mm) 2.50 - 2.60 D4 31.02 2.50 Firm to stiff reddish brown sandy gravelly CLAY. Gravel 2.70 - 3.00 ES5 is angular fine to coarse of sandstone and mudstone. (0.50)SPT(C) 3.00m, 50 30.52 3.00 3 (25 for 75mm/50 [Hemmington Member] Gravels with boulders [Driller's Description] for 75mm) [Hemmington Member] 0. SPT(C) 4.00m, 50 4 (25 for 145mm/50 for 150mm) SPT(C) 5.00m, 50 5 (25 for 75mm/50 for 80mm) SPT(C) 6.00m, 50 6 (25 for 70mm/50 for 75mm) (7.00)SPT(C) 7.00m, 50 7 (25 for 115mm/50 for 65mm) SPT(C) 8.00m, 50 8 (25 for 75mm/50 for 75mm) SPT(C) 9.00m, 50 (25 for 75mm/50 9 for 75mm) 23.52 10.00 End of Borehole at 10.00m Flush Return Information Start & End of Shift Observations Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 14-06-23 20:00 Backfilled with bentonite, concrete and bituminous material. 14-06-23 23:55 Rotary Open Hole from 3.00m BGL to 10m BGL due to very dense 5.00 1.00 4.00 20:00 23:55 5.00 0.00 15-06-23 15-06-23 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Dia (mm) Depth (m) Dia (mm) 10.00 87 10.00 101 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)

Contract Name Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1896S Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 12/06/2023 13/06/2023 PB JB **FINAL** Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale Dynamic Sample **Drilling Log** 446549.2 331847.6 33.91m (OD) Comacchio 305 04/09/2023 1:50 Weather: Fine Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Samples & In Situ Testing Strata Details Groundwater Backfill/ Test Result TCR SCR RQD FI/If eaend 0.00 - 1.00 CC1 MADE GROUND: Bituminous material. 33.71 0.20 [MADE GROUND] MADE GROUND: Concrete bound material. **IMADE GROUND** (1.00)SPT(S) 1.00m, 50 (25 for 100mm/50 1.20 - 1.30 D2 32.71 1.20 1.30 Very stiff dark brown mottled grey gravelly very sandy for 115mm) 1.30 - 1.40 D3 32 61 CLAY. Sand is fine to coarse. Gravel is angular fine to 1.50 - 1.70 ES4 coarse of sandstone and mudstone. (0.60)1.90 - 2.00 1.90 [Hemmington Member] Very stiff reddish brown silty sandy very gravelly CLAY. SPT(C) 2.00m, 50 2.00 - 3.00 **ES11** 31.91 (9,16/50 for Sand is fine to coarse. Gravel is angular fine to coarse of 225mm) (1.00)[Hemmington Member] Orange brown slightly sandy sub-angular to rounded fine to coarse GRAVEL of quartz. Sand is medium to coarse. SPT(C) 3.00m, 50 3.00 - 4.00 ES12 30.91 3.00 3 [Hemmington Member] (25 for 100mm/50 Very dense dark brown sandy sub-angular to rounded for 95mm) fine to coarse GRAVEL of quartz. Sand is fine to coarse. [Hemmington Member] (1.30)Very dense orange brown slightly gravelly fine to coarse SAND. Gravel is sub-angular to rounded fine to medium of quartz and sandstone. 4.00 - 4.20 D6 SPT(C) 4.00m, 50 4 [Hemmington Member] (8,15/50 for 4.20 - 4.30D7 150mm) 29.61 4.30 4.30 - 4.40 D8 Orange brown slightly clayey slightly gravelly fine to 4.40 - 4.80 ES9 coarse SAND 4.60 - 5.00 B10 [Hemmington Member] (0.70)SPT(C) 5.00m, 50 5.00 28 91 5 Gravelly CLAY. [Driller's Description] (25 for 65mm/50 [Hemmington Member] for 80mm) SPT(C) 6.00m, 50 (2.00)6 (25 for 75mm/50 for 75mm) SPT(C) 7.00m, 50 26.91 7.00 SAND and GRAVEL. [Driller's Description] (4,19/50 for [Hemmington Member] 150mm) SPT(C) 8.00m, 50 8 (2.20)(25 for 75mm/50 for 75mm) Very dense ark brown sandy GRAVEL. Sand is fine to SPT(C) 9.00m, 50 9 coarse. Gravel is sub-angular to rounded fine to coarse (25 for 75mm/50 D13 9.20 9.20 - 9.4024.71 of quartz. for 75mm) [Hemmington Member] (0.40)Very stiff reddish brown slightly gravelly sandy CLAY. 9.60 24.31 Sand is fine to coarse. Gravel is angular fine to coarse of (0.40)9 80 - 10 00 D14 mudstone [Edwalton Member] 23.91 10.00 End of Borehole at 10.00m Start & End of Shift Observations Flush Return Information Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 12-06-23 20:00 Backfilled with bentonite, concrete and bituminous material. 12-06-23 Rotary Open Hole from 5.00m BGL to 9.2m BGL due to very dense 23:55 7.00 1.00 2.00 7.00 0.00 13-06-23 20:00 13-06-23 23:55 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Depth (m) Dia (mm) Dia (mm) 7.00 87 77 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep. as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)


Contract Name: Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1902N Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 30/05/2023 31/05/2023 JN/ASH **FINAL** JB Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 446689.2 332306.1 40.40m (OD) Comacchio 305 04/09/2023 1:50 Weather: Drizzle+Cloudy Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Samples & In Situ Testing Strata Details Groundwater Backfill/ Test Result TCR SCR RQD FI/If 0.00 - 1.20 CC1 MADE GROUND: Black Bituminous Material. [MADE GROUND] 40.15 0.25 MADE GROUND: Concrete bound material. (0.35)**IMADE GROUND** 39.80 0.60 MADE GROUND: Brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is sub-rounded to rounded fine to (0.60)medium of quartz and quartzite. 1.00 ES11 [MADE GROUND] 1.20 - 1.30 B12 SPT(S) 1.20m. 39.20 1.20 Medium dense reddish brown slightly clayey SAND and 1.20 - 1.65 N=11 (1,1/2,3,3,3) D2 GRAVEL. Sand is fine to coarse. Gravel is angular fine to 1.40 - 1.50 D13 coarse of mudstone. 1.50 - 1.70 ES14 [Hemmington Member] (1.30)2 2 20 - 2 65 D3 SPT(S) 2.20m, N=10 (2,1/1,2,3,4) 2.50 - 2.70 ES15 2.50 37.90 Loose dark brown sightly sandy angular fine to coarse (0.30) GRAVEL of quartz and mudstone. Sand is fine to coarse. 37.60 2.80 [Hemmington Member] 2.90 - 3.00 D16 SPT(S) 3.00m, Stiff reddish brown slightly gravelly sandy CLAY. Sand is 3 3.00 - 3.45 D4 N=18 (3,3/4,5,4,5) fine to coarse. Gravel is angular fine to coarse of mudstone. (1.20)[Edwalton Member] 3.60 - 3.70 D17 4.00 - 4.45 D5 SPT(S) 4.00m, 36.40 4.00 4 Medium dense dark brown silty gravelly fine to coarse N=24 (3,4/5,6,6,7) 36.20 4.20 SAND. Gravel is angular fine to coarse of quartz and mudstone [Edwalton Member] 4.50 - 4.70 D18 Very stiff reddish brown mottled grey sandy gravelly CLAY. Gravel is angular fine to coarse of mudstone. [Edwalton Member] SPT(S) 5.00m, 500 - 545D6 5 N=25 (2,5/5,6,7,7) 6.00 - 6.45 D7 SPT(S) 6.00m, 6 N=35 (3.5/8.8.9.10)6.50 - 6.70 D19 7.00 - 7.45 D8 SPT(S) 7.00m, 7 (5.80)N=33 (5,3/7,8,8,10) 7.50 - 7.70 D20 SPT(S) 8.00m, 8.00 - 8.45 D9 8 8.00 - 9.00: Stiff to very stiff. N=37 (3,6/6,7,11,13)8.50 - 8.70 D21 D10 SPT(S) 9.00m. 9 9.00 - 9.45N=45 (2,12/10,10,11,14) 9.50 - 9.70 D22 30.40 10.00 End of Borehole at 10.00m Start & End of Shift Observations Flush Return Information Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 30-05-23 20:00 Backfilled with bentonite, concrete and bituminous material. 30-05-23 23:55 1.20 1.20 0.00 20:00 23:55 1.20 31-05-23 1.20 31-05-23 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Dia (mm) Depth (m) Dia (mm) 10.00 87 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep. as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)

				t Name:				Clien	t:				В	oreho	le ID:	
	TRA.	. //		3A-J25 N							MJV			R	H1904	1NI
MG E	ОТЕСН	VIC5		t Numbe 230600		Started: 02/05/20		Date Completed 11/05/2023		gged: Ch	ecked: S		,			T 1 N
Det	on, Co		Easting)2/05/20 hing:		31/05/2023 Ground Level:		nt Used:		FINAl Print Date:	اح.	neet 3 cale:	3 of 3	
	ary Core lling Log		_	6863.9		332589		39.20m (OE		comacchic		04/09/20		Juio.	1:50	
Weather: Fine	e+Showers			ın Foulstor	ne Tern	nination: \$	Schedule	ed Depth			T Hamme	er: AR935 Er	nergy Rati	o: 63	.5%	
	Samples & In S	1	Ť	DOD	Level	Depth (m)	lan.		rata Detail						Ground	dwater Backfill/
Depth	FI	TCR	SCR	RQD	Level (mAOD)	Depth (m) (Thickness)	Legend		ng to stroi	Strata Desc ng grey fine		se SANDST	ONE.	- 20	Strike	Installation
								Medium stror Discontinuitie smooth clean	s are 0-1 ember]	ng grey fini 0 extremel	ly closely	to closely p	ONE.	- 20 - 21 - 22 - 23 - 24 - 25		
Stori	9 End of Sh	iff Oho				Short	Informe	tion	Domotic					- 27 - 28 29		
Start Date	t & End of Sh Time Dept			S Water (m		Base	Informa	n % Flush Type	Remarks No groui	ndwater en	countere	d during dril	lling.			
					16.00 17.00 18.50 19.50	17.00 18.50 19.50 20.00	100 80 50 50	Water Water Water	Backfille	d with bent	tonite, co	ncrete and b Water Str	ike			
Borehole			sing Dia		T /		g Informa		Strike (m) Casing (m) Sealed (r	n) Time (mins)	Rose to (m)		Remark	(S
Depth (m) 20.00	Dia (mm) 146	Depth	(111)	Dia (mm)	Top (m 8.00 9.50 11.00	9.50 11.00 12.00	n) Dia (m 107 107 102	Geobore S (146)	Fracture Indevalues. TCR	ex (FI) - Fracture , SCR and RQD	es per meter, F reported as %	Fracture Spacing (lf) - reported in	mm as	Min, Average	and Max


Contract Name: Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1912S Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 16/06/2023 19/06/2023 PB/ASH JB **FINAL** Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 447225.4 333221.0 33.65m (OD) Comacchio 305 04/09/2023 1:50 Weather: Fine Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Samples & In Situ Testing Strata Details Groundwater Backfill/ Test Result TCR SCR RQD FI/If 0.00 - 1.00 CC1 MADE GROUND: Bituminous material. (0.30)[MADE GROUND] 33.35 0.30 MADE GROUND: Concrete bound material. [MADE GROUND] (0.70)1.00 - 2.00 D6 SPT(S) 1.00m, 50 32.65 1.00 Very stiff reddish brown grey sandy gravelly CLAY. Sand 1.00 - 2.00FS5 (3,20/50 for 90mm) is fine to coarse. Gravel is angular fine to coarse sandstone and mudstone. [Edwalton Member] (1.20)2.00 - 2.20 D7 SPT(S) 2.00m, 2 2.00 - 2.45 D2 N=52 31.45 2.20 Firm to stiff reddish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is angular fine to coarse (5,10/13,12,12,15) 2.50 - 2.70 ES8 sandstone and mudstone. 2.70 - 2.80 [Edwalton Member] SPT(S) 3.00m, 50 3.00 - 3.38 D3 3 3.00 - 4.00 D11 (2,9/50 for 225mm) 3.00 - 4.00 ES10 (2.80)4.00 - 4.45 D4 SPT(S) 4.00m, 4 4.00 - 5.00 D13 N=52 4.00 - 5.00 ES12 (5,6/10,13,14,15) SPT(C) 5.00m, 50 28 65 5.00 5 Gravelly CLAY. [Driller's Description] (25 for 85mm/50 [Edwalton Member] for 125mm) SPT(C) 6.00m, 50 6 (25 for 75mm/50 for 85mm) SPT(C) 7.00m, 50 7 (25 for 75mm/50 for 115mm) (5.00)SPT(C) 8.00m, 50 8 (25 for 80mm/50 for 135mm) SPT(C) 9.00m, 50 (25 for 75mm/50 9 for 75mm) 23.65 10.00 End of Borehole at 10.00m Flush Return Information Start & End of Shift Observations Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 16-06-23 20:00 Backfilled with bentonite, concrete and bituminous material. 16-06-23 23:55 5.00 1.00 Rotary Open Hole from 5.00m BGL to 10.00m BGL due to very dense 20:00 23:55 5.00 0.00 19-06-23 19-06-23 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Dia (mm) Depth (m) Dia (mm) 10.00 115 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep as %. Hand vane (HV) reports Undrained Shear Strength (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strength (UCS)

Neather: Dry	′	Rig Crew: JK&JK	Terr	mination:	Schedule	ed Depth	S	PT Hammer: AR3653	B Energy Ra	atio: 6	3%	
	Samples &	In Situ Testing	11	1		Strata De	etails		Progress			ndwater
Depth	Sample ID	Test Result	Level (mAOD)	Depth (m) (Thickness)	Legend		Strata Descript	tion	Window Run		Water Strike	Backfill/ Installation
0.30 0.30	ES ES1		35.64	0.10 (0.60)		slightly gravel rootlets (6x15	ly sandy CLAY, w). Sand is fine to					
0.50	D2		35.04	0.70		sub-rounded t	o rounded fine to	coarse of quartzite.				
- 1.00	ES3			(0.50)						1		
1.20	D4	SPT(S) 1.20m, N=15	34.54	1.20								
1.20 - 1.30 1.20 - 1.40	B5 ES10	(3,3/4,3,4,4) Recovery = 100%	04.44	(0.40)			ND: Firm dark gr	ey sandy gravelly	1 20 - 1 65 100% rec	-		
1.20 - 1.65 1.20 - 2.20 1.60 - 1.70	D26 L24 D11	Recovery = 100%	34.14	1.60			s fine to coarse. G unded fine to med		1.20 - 2.20 100% rec			
1.80 - 1.90 2.20 - 2.80	ES12 UT22	Recovery = 50%								2		
									2.20 - 2.80 50% rec			
2.80 - 3.00	ES13	Recovery = 100%		(2.00)		[MADE GROU MADE GROU	JND] ND: Firm to stiff y	vellowish brown	50% rec			
2.80 - 3.80	L23	Recovery = 100 %				slightly gravel		and is fine. Gravel is		3		
3.00 - 3.20	D14					quartzite.	o roundou or mio	to modium or	2.80 - 3.80			
									100% rec			
3.60 - 3.80 3.80 - 4.80	D15 L25	SPT(S) 3.80m, N=36	32.14	3.60 (0.30)								III
3.90 - 4.10	ES16	(7,8/8,9,9,10)	31.84	3.90 (0.30)		MADE GROU	JND] ND: Medium den	se friable dark		4		
4.10 - 4.20 4.20 - 4.40	D17 D18	Recovery = 100%	31.54	4.20				ly GRAVEL. Sand is ir to sub-angular fine	3.80 - 4.80			
						to coarse of q	uartz.	ii to dab angalar lino	100% rec			
4.80 - 5.00	UT6	Recovery = 0%					ND: Dark brown	slightly clayey very				
5.00 - 6.00	L7	Recovery = 100%		(1.40)				coarse. Gravel is coarse of quartz and	4.80 - 5.00 0% rec	5		
5.10 - 5.20	D19					sandstone.	JNDI					
500 570	Boo		00.44	5.00		MADE GROU	ND: Dense orang coarse SAND. (5.00 - 6.00 100% rec			
5.60 - 5.70	D20		30.14	5.60		angular to rou	nded fine to coar		10070100			
6.00 - 7.00	C8	SPT(C) 6.00m, N=44				sandstone. [MADE GROU				6		
		(10,14/14,16,12,2) Recovery = 30%		(1.40)				y slightly gravelly arse. Gravel is sub-				
						angular to rou sandstone.	nded fine to coar	se quartz and	6.00 - 7.00 30% rec			
						[Gunthorpe M	ember] rown mottled gre	v slightly sandy				
7.00 - 7.10	D21	SPT(C) 7.00m, 50	28.74	7.00		gravelly CLAY	. Sand is fine to d	coarse. Gravel is		7		
7.00 - 8.00	L9	(16,9/17,18,15,) Recovery = 100%				angular fine to	coarse of mudsi	one and sandstone.				
				(1.29)		[Gunthorpe M	ember]		7.00 - 8.00 100% rec			
							rown slightly sand coarse. Gravel i	dy gravelly CLAY. s sub-angular to				
8.00	50	SPT(C)-8.00m, 50 2(20,5/20,21,9,)],	coarse of mudst			8		
	(20,5/20,2 9,)	21,5/20,21,9,)	27.45	8.29		Gunthorpe M	emberl					
	,,					6.00 - 6.70: AZC	L .	STONE. Discontinuit	ies (0-20)	E		
						are extremely	closely spaced p	lanar with clay infill.	` /			
						[Gunthorpe M	ember] End of Boreh	ala at 9 200m		9		
							Elia di Boleli	ole at 6.29011				
										Ė		
										Ė		
	Fracture	TCR SCR RQD	Parri	olo Di	otor C-	ping Diameter	Domarka:			<u> </u>		
Date	Progre Time	ss by Time Depth Casing Water	Deptl		eter De	pth Diameter		encountered during d				
			8.29	140	5.0			entonite, concrete and		s mat	erial.	
							Strike (m) Casing	Water Simple (min		1)	Rema	arks
						1 1	. ,	, , , , , , , , , , , , , , , , , , , ,		+		

				Name: A-J25 N	IEAD				Clien	t:		BMJV		E	Boreho	le ID:	
5	IRA			Number		Started:	1	Date Com	pleted	: Lo	gged:	Checked:	Status:		В	H1920	ON
∭ MG E	OTECHN	IICS		30600		2/05/20		10/05/			/ASH	JB	FINA	L c	Sheet 2	2 of 2	
Rot	ary Core	E	asting:		Nortl			Ground Le			nt Used		Print Date:		Scale:	. 01 2	
	lling Log		447	7250.8		333971.	.2	35.74m	n (OD) C	omaco	chio 305	04/09/2	023		1:50	
Weather: Dry		Rig Cre	w: JK&	JK	Term	ination: S	Schedul	ed Depth				SPT Hamm	er: AR3653 I	Energy R	atio: 6	3%	
	Samples & In S Test Result /	1	î .					1	Str	ata Detail	s					Groun	
Depth	FI	TCR	SCR	RQD	Level (mAOD)	Depth (m) (Thickness)	Legend				Strata I	Description			10	Water Strike	Backfill/ Installation
															- 10		
_															11		
_															12		
-																	
															13		
															14		
															'4		
															15		
_															16		
															17		
-															18		
_															19		
															اقا		
Start	& End of Sh	 ift Obse	rvations	<u> </u>	<u> </u>	Flush	Informa	 ation		Remarks	S:						
Date				Water (m) Top 6.00	Base 7.00	Retur 10	n % Flush	Туре	No grou	ndwate	r encounter	ed during dril	ling.			
					0.00	7.00	"	Ail/l	IVIIOL	□ackfille	u with b	pentonite, c	oncrete and I	oituminou	is mate	erial.	
													\\/-t C'	ileo			
D	Diametr							- 4: -		Strike (m) Casino	g (m) Sealed	Water Str (m) Time (mins)	Rose to (m	1)	Remar	ks
Borehole I Depth (m)	Dia (mm)	Depth (ing Diar m) E	Dia (mm)	Top (m)	Base (m	g Inform n) Dia (n	ation nm) Barrel	Туре								
8.29	140	5.00		150	6.00	7.00				Fracture Indi	24 (EI) E	actures per motor	Fracture Species	If) = renorted	n mm ac	Min Average	and May
										racture Indevalues. TCR	SCR and	actures per meter RQD reported as	, Fracture Spacing (%	ıı) - reported i	ıı mm as	win, Average	апо Мах

Contract Name Client: Borehole ID: M1 J23A-J25 NEAR **BMJV** BH1933S Contract Number: Date Started: Date Completed: Logged: Checked: Status: G230600 24/05/2023 25/05/2023 JN/ASH JB **FINAL** Sheet 1 of 1 Easting: Northing: Ground Level: Plant Used: Print Date: Scale: Dynamic Sample **Drilling Log** 447207.5 335441.9 48.27m (OD) Comacchio 305 04/09/2023 1:50 Weather: Fine Rig Crew: Adrian Foulstone Termination: Scheduled Depth SPT Hammer: AR935 Energy Ratio: 63.5% Samples & In Situ Testing Strata Details Groundwater Backfill/ Test Result TCR SCR RQD FI/If eaend 0.00 - 1.20 CC1 MADE GROUND: Black Bituminous Material. 48.12 0.15 [MADE GROUND] MADE GROUND: Concrete bound material. **ES11** 0.40 0.40 47.87 [MADE GROUND] MADE GROUND: Greyish brown slightly sandy (0.70)GRAVEL, with low cobble content. Sand is fine to coarse. Gravel is sub-angular to rounded fine to coarse 1.00 **ES13** quartz and quartzite. Cobbles are angular to sub-angular 1.10 1.20 47.17 1.20 - 1.30 B12 SPT(S) 1.20m. of quartz. 47.07 1.20 - 1.30 B`1 N=26 (1,5/6,6,7,7) [MADE GROUND] (0.50)Firm reddish brown slightly sandy very gravelly CLAY. Sand is fine to coarse. Gravel is sub-angular to sub-1.20 - 1.30 D15 1.20 - 1.65 D2 46.57 1.70 1.30 - 1.40 rounded fine to coarse of quartz and quartzite. **ES14** 1.70 - 1.90 ES16 [Gunthorpe Member] 2 1.90 - 2.00 D17 (0.70)Firm to stiff reddish brown sandy very gravelly CLAY. 2.20 - 2.65 D3 SPT(S) 2.20m, Sand is fine to coarse. Gravel is angular fine to coarse of N=28 (3,5/6,8,7,7) mudstone and quartz. 45.87 2.40 [Gunthorpe Member] 2.80 - 2.90 D18 Stiff reddish brown slightly gravelly sandy CLAY. Sand is 3 fine to coarse. Gravel is angular fine to coarse of 3.10 - 3.20 CSS19 SPT(S) 3.20m, 3.20 - 3.65 D4 N=34 (3,6/8,8,9,9) [Gunthorpe Member] 2.00 - 2.10: Firm grey Very stiff reddish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is angular fine to coarse of 4.00 - 4.10 CSS20 4 4.10 - 4.20 D21 mudstone. SPT(S) 4.20m, 4.20 - 4.65 [Gunthorpe Member] N=42 (2,8/9,10,10,13) (4.80)5.00 - 5.10 CSS22 5 5.10 - 5.20D23 SPT(S) 5.20m, 5.20 - 5.65D6 N = 32(3.3/7.7.8.10)6.00 - 6.10 CSS24 6 6.10 - 6.20D25 SPT(S) 6.20m, 6.20 - 6.65D7 N=37 (1,7/8,10,10,9)7.00 - 7.10 CSS26 7 7.10 - 7.20 D27 SPT(S) 7.20m, 50 41.07 7.20 Firm to stiff reddish brown mottled bluish grey sandy 7.20 - 7.60D8 (1,1/50 for 245mm) gravelly CLAY. Sand is fine to coarse. Gravel is subangular to angular fine to coarse of mudstone. [Gunthorpe Member] 8 8.20 - 8.65 D9 SPT(S) 8.20m, N=49 (5,9/10,12,12,15) (2.80)9 9.20 - 9.65D10 SPT(S) 9.20m. N=48 (3,10/10,10,13,15) 38.27 10.00 End of Borehole at 10.00m Start & End of Shift Observations Flush Return Information Remarks: Time Depth (m) Casing (m) Water (m) Top Base Min % Max % Type Colour No groundwater encountered during drilling. 24-05-23 20:00 Backfilled with bentonite, concrete and bituminous material. 24-05-23 23:55 7.20 1.50 3.00 7.20 0.00 25-05-23 20:00 1.50 25-05-23 23:55 Water Strike Strike (m) Casing (m) Sealed (m) Time (mins) Rose to (m) Remarks Casing Diameter Borehole Diameter Coring Information Dia (mm) Top (m) Base (m) Dia (mm) Barrel Type Depth (m) Depth (m) Dia (mm) 10.00 87 Fracture Index (FI) - Fractures per meter, Fracture Spacing (If) - reported in mm as Min, Average and Max values. TCR, SCR and RQD rep. as %. Hand vane (HV) reports Undrained Shear Strenath (Su). Pocket penetrometer (PP) reports Unconfined Compressive Strenath (UCS)

				t Name:				Clie	nt:				В	oreho	le ID:	
Έ ς	TD AT			3A-J25 N							BMJV			D	П10 3.	7NI
	OTECHN	ICS		t Numbe		Started:		Date Complete		00	Checked:			В	H1937	' IN
				230600		03/07/20		04/07/202		РВ	JB	FINA	- ا	heet 2	2 of 2	
	ary Core Iling Log		Easting 44	: 7173.2		hing: 335788		Ground Level: 51.20m (O		ant Used: Comacc		Print Date: 04/09/20		cale:	1:50	
Weather: Fine		Rig Cr		Mountair		nination: §		-	-,			er: AR666 E		io: 65		
	Samples & In S		ng						trata Deta				J,		Groun	
Depth	Test Result / FI	TCR	SCR	RQD	Level (mAOD)	Depth (m) (Thickness)	Legend		. 1- "		escription			_ 10	Water Strike	Backfill/ Installation
					41.20	10.00		slightly claye	ey MUDS	STONE. F	ractures a	n mottled gre e 60-90° plai	eenish nar	- 10		
								rough, partly [Gunthorpe	Memberl							
									End	d of Boreh	ole at 10.00	00m				
														11		
_														12		
<u>.</u>																
_														13		
: = :														14		
-																
<u> </u>														15		
- -																
														16		
														10		
														17		
_														18		
_																
<u>-</u>														19		
-																
				+												
	& End of Shi) T		Informa		Remark							
Date	Time Depth	1 (m) Ca	asıng (m)	Water (m	0.00	3.50	Retur 100	ן	No gro	undwater led with b	encounter entonite, c	ed during dril oncrete and b	lling. oituminou	s mate	erial.	
					3.50 4.00	4.00 5.00	90	Air/Mist								
					5.00 6.00	6.00 7.00	100 90	Air/Mist				Water Str				
Borehole	Diameter	Cas	sing Dia	ımeter	7.00		100 Inform	ation		m) Casing	(m) Sealed	(m) Time (mins)	Rose to (m)	Remark	(S
Depth (m) 3.50	Dia (mm) 101	Depth		Dia (mm)	Top (m)		Dia (m	nm) Barrel Type	2							
10.00	146				4.00 5.00	5.00 6.00	107	·	Fracture In	ndex (FI) - Frac	ctures per meter	, Fracture Spacing (If) - reported in	n mm as	Min, Average	and Max
					3.00	0.00	107		values. 1C	n, our and h	ran rehorted as	70				

Appendix C: Laboratory results

Rev 002

Jade Baxter

Van Elle Kirkby Lane Pinxton Nottinghamshire NG16 6JA

Your order number:

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-34122

Project / Site name: M1-J23A-J25 Samples received on: 09/05/2023

Your job number: G230600 Samples instructed on/

Analysis started on:

Analysis completed by:

17/05/2023

23/05/2023

Report Issue Number: 1 **Report issued on:** 23/05/2023

Samples Analysed: 1 soil sample

Claire Brown-Crociquia Group Customer Services Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

VE297658

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-34122 Project / Site name: M1-J23A-J25 Your Order No: VE297658

Lab Sample Number				2681469
Sample Reference		BH1920N		
Sample Number				None Supplied
Depth (m)				0.30
Date Sampled				02/05/2023
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	10
Total mass of sample received	kg	0.001	NONE	1.2

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	IZJ

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.1
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.023
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	2.5

Heavy Metals / Metalloids

Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	3.9
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	9
Barium (aqua regia extractable)	mg/kg	1	MCERTS	270
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	1
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8
Chromium (III)	mg/kg	1	NONE	21
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	86
Iron (aqua regia extractable)	mg/kg	40	MCERTS	26000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	99
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	860
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	40
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	190

Analytical Report Number: 23-34122 Project / Site name: M1-J23A-J25 Your Order No: VE297658

Lab Sample Number				2681469
Sample Reference				BH1920N
Sample Number				None Supplied
Depth (m)	0.30			
Date Sampled	02/05/2023			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Monoaromatics & Oxygenates				
Benzene	μg/kg	5	NONE	< 5.0
Toluene	μg/kg	5	NONE	< 5.0
Ethylbenzene	μg/kg	5	NONE	< 5.0
p & m-xylene	μg/kg	5	NONE	< 5.0
o-xylene	μg/kg	5	NONE	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	NONE	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	NONE	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	NONE	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	NONE	16
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	18

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	NONE	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	NONE	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	NONE	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	NONE	12
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	17

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number : 23-34122 Project / Site name: M1-J23A-J25

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2681469	BH1920N	None Supplied	0.3	Brown loam and sand with gravel and vegetation.

Analytical Report Number: 23-34122 Project / Site name: M1-J23A-J25

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Mothed Description	Analytical Mathad Defevense	Method	Wet / Dry	Accreditation
Analytical Method Description	Analytical Method Reference	number	Analysis	Status
Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 Meth for the Determination of Metals in Soil.		L038-PL	D	MCERTS
dentification in soil Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques. In house method based on HSG 248		A001-PL	D	ISO 17025
water soluble, in soil Determination of water soluble boron in soil by hot water soluble boron in soil by hot water soluble, in soil In-house method based on Second Site Properties version 3		L038-PL	D	MCERTS
Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	NONE
In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
	Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of free cyanide by distillation followed by colorimetry. Determination of actions in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. (30 oC) Determination of pH in soil by addition of water followed by automated electrometric measurement. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of total cyanide by distillation followed by colorimetry. Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of free cyanide by distillation followed by colorimetry. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of cations in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method based on British Standard Methods and MCERTS requirements. Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight. Determination of total cyanide by distillation followed by colorimetry. Determination of roganic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 In-house method based on USEPA8260	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by colorimetry. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. (30 oC) In house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Moisture content, determined gravimetrically. (30 oC) In house method. L038-PL L038-PL L038-PL L038-PL L038-PL L038-PL L039-PL A001-PL L039-PL L039-PL L039-PL Determination of pH in soil by addition of water followed by automated electrometric measurement. L019-UK/PL Determination of pH in soil by addition of water followed by automated electrometric determination of stone > 10 mm as 90 dry weight. Determination of total cyanide by distillation followed by colorimetry. Determination of total cyanide by distillation followed by colorimetry. Determination of of granic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate. Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	Analytical Method Description Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent). Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques. Determination of water soluble boron in soil by hot water extract followed by ICP-OES. Determination of free cyanide by distillation followed by colorimetry. Determination of free cyanide by distillation followed by ICP-OES. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. In house method based on REWAM 2006 Methods for the Determination of Metals in Soil. Determination of cations in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically, (30 oC) In house method. L038-PL D D D D D D D D D D D D D

Analytical Report Number : 23-34122 Project / Site name: M1-J23A-J25

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acror	Descriptions Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FIC	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
10	GC - Single coil/column gas chromatography
20	GC-GC - Double coil/column gas chromatography
Tota	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Sample Deviation Report

Analytical Report Number : 23-34122 Project / Site name: M1-J23A-J25

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID		•	Sample Deviation	Test Name	Test Ref	Test Deviation
BH1920N	None Supplied	S	2681469	С	Free cyanide in soil	L080-PL	С
BH1920N	None Supplied	S	2681469	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
BH1920N	None Supplied	S	2681469	С	Total cyanide in soil	L080-PL	С

Jade Baxter

Van Elle Kirkby Lane Pinxton Nottinghamshire NG16 6JA

Your order number:

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-38573

Project / Site name: M1 J23a-J25 Samples received on: 05/06/2023

Your job number: G230600 Samples instructed on/ 12/06/2023

Analysis started on:

19/06/2023 Analysis completed by:

Report Issue Number: 1 Report issued on: 19/06/2023

Samples Analysed: 3 soil samples

Anna Goc PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: - 4 weeks from reporting soils

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

VE299170

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-38573 Project / Site name: M1 J23a-J25 Your Order No: VE299170

Lab Sample Number				2708875	2708876	2708877
Sample Reference				BH1877N	BH1877N	BH1877N
Sample Number				11	12	15
Depth (m)				0.50	1.00	1.50
Date Sampled				02/06/2023	02/06/2023	02/06/2023
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		•	·
Stone Content	%	0.1	NONE	99	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	0.39	11	14
Total mass of sample received	kg	0.001	NONE	1.7	1.7	1
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	-
Asbestos Analyst ID	N/A	N/A	N/A	KWB	N/A	N/A
·	•			2	.4	.4
General Inorganics pH - Automated	pH Units	N/A	MCERTS	9.3	8.7	8.4
	mg/kg	1 1	MCERTS	9.3 < 1.0	< 1.0	< 1.0
Total Cyanide Free Cyanide	mg/kg	1	MCERTS			
Water Soluble SO4 16hr extraction (2:1 Leachate				< 1.0 0.017	< 1.0 0.054	< 1.0 0.082
Equivalent)	g/l %	0.00125	MCERTS MCERTS			
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.2	0.4	0.3
Heavy Metals / Metalloids Antimony (aqua regia extractable) Arsenic (aqua regia extractable)	mg/kg mg/kg	1	ISO 17025 MCERTS	< 1.0 2	< 1.0 6.4	< 1.0 5.6
Barium (aqua regia extractable)	mg/kg	1	MCERTS	460	130	220
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.11	0.92	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	< 0.2	0.3	< 0.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.4	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	3.8	24	28
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	3.8	24	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	5.4	22	15
Iron (aqua regia extractable)	mg/kg	40	MCERTS	3200	28000	31000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	12	9.5	8.4
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	170	580	380
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	< 0.25	0.64	0.51
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	4	26	27
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	7.2	26	33
Zinc (aqua regia extractable)	mg/kg	1	MCEKIS	36	53	79
Monoaromatics & Oxygenates						
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
Toluene	μg/kg	5	MCERTS	< 5.0	< 5.0	
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
p & m-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
o-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	< 5.0	

Analytical Report Number: 23-38573 Project / Site name: M1 J23a-J25 Your Order No: VE299170

Lab Sample Number	2708875	2708876 BH1877N 12 1.00 02/06/2023	2708877 BH1877N 15 1.50 02/06/2023			
Sample Reference	BH1877N 11 0.50 02/06/2023					
Sample Number						
Depth (m)						
Date Sampled						
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons					•	•
TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	_
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	_
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR		0.001	NONE	< 0.001	< 0.001	_
TPH-CWG - Aromatic >EC10 - EC12 _{EH CU 1D AR}	mg/kg mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH_CU_1D_AR}		2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}		10	MCERTS	< 10	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	13	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	22	< 10	-

 $\mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

Analytical Report Number: 23-38573 Project / Site name: M1 J23a-J25

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2708875	BH1877N	11	0.5	Non Soil**
2708876	BH1877N	12	1	Brown clay.
2708877	BH1877N	15	1.5	Brown clay.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)			L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.		A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	ses content of soil Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.		L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

^{**}Unaccredited sample matrix.

Sample Deviation Report

Analytical Report Number : 23-38573 Project / Site name: M1 J23a-J25

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID		Sample	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH1877N	11	S	2708875	С	Free cyanide in soil	L080-PL	С
BH1877N	11	S	2708875	С	Total cyanide in soil	L080-PL	С
BH1877N	12	S	2708876	С	Free cyanide in soil	L080-PL	С
BH1877N	12	S	2708876	С	Total cyanide in soil	L080-PL	С
BH1877N	15	S	2708877	С	Free cyanide in soil	L080-PL	С
BH1877N	15	S	2708877	С	Total cyanide in soil	L080-PL	С

Jade Baxter

Van Elle Kirkby Lane Pinxton Nottinghamshire NG16 6JA i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-38608

Project / Site name: G230600 Env 02 Samples received on: 26/05/2023

Your job number: G230600 Samples instructed on/

Analysis started on:

12/06/2023

Your order number: VE299170 Analysis completed by: 19/06/2023

Report Issue Number: 1 Report issued on: 19/06/2023

Samples Analysed: 3 soil samples

Signed:

Dominika Warjan Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-38608

Project / Site name: G230600	Env
Your Order No: VE299170	

Lab Sample Number				2709160	2709161	2709162
Sample Reference	BH1933S	BH1933S	BH1933S			
Sample Number	11	13	14			
Depth (m)				0.40	1.00	1.30-1.50
Date Sampled				25/05/2023	25/05/2023	25/05/2023
Time Taken				None Supplied	None Supplied	None Supplied
				чоне заррнеа	попе заррпеа	Hone Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	91	81	< 0.1
Moisture Content	%	0.01	NONE	1.2	0.98	11
Total mass of sample received	kg	0.001	NONE	1.7	1.7	1.8
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Asbestos Analyst ID	N/A	N/A	N/A	KWB	KWB	N/A
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	10.7	9.6	9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.11	0.022	0.032
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	< 0.1	< 0.1	0.1
Heavy Metals / Metalloids Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	< 1.0	< 1.0	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	2.6	2.4	4.4
Barium (aqua regia extractable)	mg/kg	1	MCERTS	130	730	360
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.11	0.19	0.93
Boron (water soluble)	mg/kg	0.2	MCERTS	0.2	0.2	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.1	3.5	0.4
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (III)	mg/kg	1	NONE	3.3	4.7	36
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	3.4	4.8	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	6.8	16	14
Iron (aqua regia extractable)	mg/kg	40	MCERTS	2100	4800	32000
Lead (aqua regia extractable)	mg/kg	1	MCERTS	29	28	9.1
Manganese (aqua regia extractable)	mg/kg	1	MCERTS	130	190	460
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS MCERTS	0.26	< 0.25	< 0.25
Nickel (aqua regia extractable)	mg/kg	1		4.2	4.6	34
Selenium (aqua regia extractable)	mg/kg mg/kg	1	MCERTS MCERTS	< 1.0	< 1.0	< 1.0 33
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg mg/kg	1	MCERTS	4.9	7.7	
zinc (aqua regia extractable)	ilig/kg		LICERTS	24	48	51
Monoaromatics & Oxygenates						
Benzene	μg/kg	5	MCERTS	< 5.0	< 5.0	=
Toluene	μg/kg	5	MCERTS	< 5.0##	< 5.0	=
Ethylbenzene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
p & m-xylene	μg/kg	5	MCERTS	< 5.0##	< 5.0	-
o-xylene	μg/kg	5	MCERTS	< 5.0	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	< 5.0	-

Analytical Report Number: 23-38608 Project / Site name: G230600 Env 02

Your Order No: VE299170

Lab Sample Number	2709160	2709161	2709162			
Sample Reference	BH1933S	BH1933S	BH1933S			
Sample Number	11	13	14			
Depth (m)	0.40	1.00	1.30-1.50			
Date Sampled	25/05/2023	25/05/2023	25/05/2023			
Time Taken	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Petroleum Hydrocarbons			-			
TPH-CWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	< 10	-
TPH-CWG - Aromatic >EC5 - EC7 _{HS 1D AR}	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12 _{EH_CU_1D_AR}	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 _{EH CU_1D_AR}	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	< 10	< 10	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 23-38608 Project / Site name: G230600 Env 02

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2709160	BH1933S	11	0.4	Non Soil^^
2709161	BH1933S	13	1	Non Soil^^
2709162	BH1933S	14	1.30-1.50	Brown clay.

Analytical Report Number: 23-38608 Project / Site name: G230600 Env 02

Water matrix abbreviations:
Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

by ICP-OES. alent) and lent). egia digestion blarised light n staining	Analytical Method Reference In house method. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	Method number L038-PL L038-PL	Wet / Dry Analysis	Accreditation Status MCERTS
alent) and lent). egia digestion	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.			
plarised light	for the Determination of Metals in Soil.	L038-PL	D	MCEDIC
				MCERTS
	In house method based on HSG 248	A001-PL	D	ISO 17025
soil by hot water	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
ion followed by	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
regia digestion	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically. (30 oC)		L019-UK/PL	W	NONE
f water followed by	In house method.	L099-PL	D	MCERTS
ess otherwise one > 10 mm as	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
cion followed by	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
y oxidising with on with iron (II)	In house method.	L009-PL	D	MCERTS
X and MTBE in soil (Monoaromatics) Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited		L073B-PL	W	MCERTS
al Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
rocarbons in soil	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
ic in your area area area area area area area ar	egia digestion really. (30 oC) water followed by water followed by ses otherwise one > 10 mm as ion followed by y oxidising with in with iron (II) see GC-MS. ed	version 3 In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method. In house method. In house method. In house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In house method. In house method based on USEPA8260 In-house method based on USEPA8260	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In-house method. In house method. In house method. In house method. In house method. In-house method. In-house method based on British Standard Methods and MCERTS requirements. In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In house method. In house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In house method. In house method based on USEPA8260 In house method based on USEPA8260 In house method based on USEPA8260 In house method by calculation	version 3 In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. In house method. L038-PL D Journal of the Determination of Metals in Soil. In house method. L019-UK/PL W Journal of the Determination of Metals in Soil. In house method. L019-UK/PL D Journal of the Determination of Metals in Soil. Journal of Journal of The Determination of Metals in Soil. Journal of Journal of Journal of Metals in Soil. Journal of Journal of Metals in Soil. Journal of Journal of Metals in Soil. Journal of Journal of Journal of Metals in Soil. Journal of Journal of Metals in Soil. Journal of Journal of Metals in Soil. Journal of Journal of Journal of Metals in Soil. Journal of Journal of Metals in Soil

Analytical Report Number : 23-38608 Project / Site name: G230600 Env 02

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

^^UNACCREDITED SAMPLE MATRIX

##Quality control parameter has a high recovery (outside of limit); however the associated result is below the reporting limit, other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

Sample Deviation Report

Analytical Report Number: 23-38608 Project / Site name: G230600 Env 02

 $This \ deviation \ report \ indicates \ the \ sample \ and \ test \ deviations \ that \ apply \ to \ the \ samples \ submitted \ for \ analysis. Please \ note \ that \ the$ associated result(s) may be unreliable and should be interpreted with care.

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH1933S	11	S	2709160	С	Free cyanide in soil	L080-PL	С
BH1933S	11	S	2709160	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
BH1933S	11	S	2709160	С	Total cyanide in soil	L080-PL	С
BH1933S	13	S	2709161	С	Free cyanide in soil	L080-PL	С
BH1933S	13	S	2709161	С	BTEX and MTBE in soil (Monoaromatics)	L073B-PL	С
BH1933S	13	S	2709161	С	Total cyanide in soil	L080-PL	С
BH1933S	14	S	2709162	С	Free cyanide in soil	L080-PL	С
BH1933S	14	S	2709162	С	Total cyanide in soil	L080-PL	С

Jade Baxter

Van Elle□ Kirkby Lane Pinxton Nottinghamshire NG16 6JA

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-40742

Project / Site name: M1 J23a J25 Samples received on: 16/06/2023

Your job number: G230600 Samples instructed on/

Analysis started on:

Analysis completed by: 27/06/2023

22/06/2023

Report Issue Number: Report issued on: 28/06/2023

Samples Analysed: 2 soil samples

VE299764

Your order number:

Signed:

Joanna Szwagrzak Junior Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

soils

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-40742 Project / Site name: M1 J23a J25 Your Order No: VE299764

Lab Sample Number	2722564	2722565			
Sample Reference	BH1877S	BH1896S			
Sample Number				3	4
Depth (m)				1.80-2.00	1.50-1.70
Date Sampled				15/06/2023	12/06/2023
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	13	19
Total mass of sample received	kg	0.001	NONE	0.6	1

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.7	8.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Free Cyanide		1	MCERTS	< 1.0	< 1.0
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	0.025	0.034
Total Organic Carbon (TOC) - Automated		0.1	MCERTS	0.3	< 0.1

Heavy Metals / Metalloids

mg/kg	1	ISO 17025	2.7	2.6
mg/kg	1	MCERTS	6.3	6.8
mg/kg	1	MCERTS	96	120
mg/kg	0.06	MCERTS	1.2	1.1
mg/kg	0.2	MCERTS	0.5	0.4
mg/kg	0.2	MCERTS	< 0.2	< 0.2
mg/kg	1.8	MCERTS	< 1.8	< 1.8
mg/kg	1	NONE	39	29
mg/kg	1	MCERTS	39	30
mg/kg	1	MCERTS	11	21
mg/kg	40	MCERTS	820	3500
mg/kg	1	MCERTS	6.7	10
mg/kg	1	MCERTS	660	500
mg/kg	0.3	MCERTS	< 0.3	< 0.3
mg/kg	0.25	MCERTS	0.28	0.5
mg/kg	1	MCERTS	35	28
mg/kg	1	MCERTS	< 1.0	< 1.0
mg/kg	1	MCERTS	35	32
mg/kg	1	MCERTS	59	67
	mg/kg	mg/kg 1 mg/kg 0.06 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 1.8 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 40 mg/kg 1 mg/kg 0.3 mg/kg 0.25 mg/kg 1 mg/kg 1 mg/kg 1	mg/kg 1 MCERTS mg/kg 1 MCERTS mg/kg 0.06 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 1.8 MCERTS mg/kg 1 MCERTS mg/kg 0.3 MCERTS mg/kg 0.25 MCERTS mg/kg 1 MCERTS	mg/kg 1 MCERTS 6.3 mg/kg 1 MCERTS 96 mg/kg 0.06 MCERTS 1.2 mg/kg 0.2 MCERTS 0.5 mg/kg 0.2 MCERTS < 0.2

Monoaromatics & Oxygenates

Benzene	μg/kg	5	MCERTS	< 5.0	-
Toluene	μg/kg	5	MCERTS	< 5.0	-
Ethylbenzene	μg/kg	5	NONE	< 5.0#	-
p & m-xylene	μg/kg	5	MCERTS	< 5.0	-
o-xylene	μg/kg	5	MCERTS	< 5.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0	-

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	2.4	-
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	5.4	-
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	12	-
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	35	-
TPH-CWG - Aliphatic (EC5 - EC35) _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	54	-

TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001	-

Analytical Report Number: 23-40742 Project / Site name: M1 J23a J25 Your Order No: VE299764

Lab Sample Number	2722564	2722565			
Sample Reference	BH1877S	BH1896S			
Sample Number				3	4
Depth (m)				1.80-2.00	1.50-1.70
Date Sampled				15/06/2023	12/06/2023
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21 _{EH_CU_1D_AR}	mg/kg	10	MCERTS	< 10	-
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-
TPH-CWG - Aromatic (EC5 - EC35) EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	-

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2722564	BH1877S	3	1.80-2.00	Brown clay.
2722565	BH1896S	4	1.50-1.70	Brown clay.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
----------------------	-------------------------------	-----------------------------	------------------	-----------------------	-------------------------

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	, ,
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

^{# -} Data reported unaccredited due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted. The result should be considered as being deviating and may be compromised.

This deviation report indicates the sample and test deviations that apply to the samples submitted for analysis. Please note that the associated result(s) may be unreliable and should be interpreted with care.

Key: a - No sampling date b - Incorrect container c - Holding time d - Headspace e - Temperature

Sample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
BH1896S	4	S	2722565	С	Free cyanide in soil	L080-PL	С
BH1896S	4	S	2722565	С	Total cyanide in soil	L080-PL	С

Jade Baxter

Van Elle□ Kirkby Lane Pinxton Nottinghamshire NG16 6JA i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 23-40930

Project / Site name: M1 J23a-J25 Samples received on: 20/06/2023

Your job number: G230600 Samples instructed on/

Analysis started on:

22/06/2023

Your order number: VE299764 Analysis completed by: 29/06/2023

Report Issue Number: 1 Report issued on: 29/06/2023

Samples Analysed: 1 soil sample

Dominika Warjan Reporting Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-40930 Project / Site name: M1 J23a-J25 Your Order No: VE299764

Lab Sample Number		2723883		
Sample Reference	BH1912S			
Sample Number				5
Depth (m)				1.00-2.00
Date Sampled				20/06/2023
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	13
Total mass of sample received	 kg	0.001	NONE	2

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.9
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Free Cyanide	mg/kg	1	MCERTS	< 1.0
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.03
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.2

Heavy Metals / Metalloids

mg/kg	1	ISO 17025	< 1.0
mg/kg	1	MCERTS	7.6
mg/kg	1	MCERTS	140
mg/kg	0.06	MCERTS	1.1
mg/kg	0.2	MCERTS	0.2
mg/kg	0.2	MCERTS	< 0.2
mg/kg	1.8	MCERTS	< 1.8
mg/kg	1	NONE	30
mg/kg	1	MCERTS	30
mg/kg	1	MCERTS	14
mg/kg	40	MCERTS	34000
mg/kg	1	MCERTS	10
mg/kg	1	MCERTS	590
mg/kg	0.3	MCERTS	< 0.3
mg/kg	0.25	MCERTS	0.46
mg/kg	1	MCERTS	27
mg/kg	1	MCERTS	< 1.0
mg/kg	1	MCERTS	38
mg/kg	1	MCERTS	69
	mg/kg	mg/kg 1 mg/kg 0.06 mg/kg 0.2 mg/kg 0.2 mg/kg 0.2 mg/kg 1.8 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 1 mg/kg 40 mg/kg 1 mg/kg 0.3 mg/kg 0.25 mg/kg 1 mg/kg 1 mg/kg 1	mg/kg 1 MCERTS mg/kg 1 MCERTS mg/kg 0.06 MCERTS mg/kg 0.2 MCERTS mg/kg 0.2 MCERTS mg/kg 1.8 MCERTS mg/kg 1 MCERTS mg/kg 0.3 MCERTS mg/kg 0.25 MCERTS mg/kg 1 MCERTS

Monoaromatics & Oxygenates

Benzene	μg/kg	5	MCERTS	< 5.0
Toluene	μg/kg	5	MCERTS	< 5.0
Ethylbenzene	μg/kg	5	MCERTS	< 5.0
p & m-xylene	μg/kg	5	MCERTS	< 5.0
o-xylene	μg/kg	5	MCERTS	< 5.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	5	NONE	< 5.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	4.3
TPH-CWG - Aliphatic >EC16 - EC21 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35) EH_CU+HS_1D_AL	mg/kg	10	NONE	12

Analytical Report Number: 23-40930 Project / Site name: M1 J23a-J25 Your Order No: VE299764

Lab Sample Number		2723883		
Sample Reference	BH1912S			
Sample Number				5
Depth (m)				1.00-2.00
Date Sampled				20/06/2023
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
TPH-CWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC8 - EC10 HS_1D_AR	mg/kg	0.001	NONE	< 0.001
TPH-CWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic (EC5 - EC35) _{EH_CU+HS_1D_AR}	mg/kg	10	NONE	< 10

 $\label{eq:U/S} \mbox{U/S} = \mbox{Unsuitable Sample} \quad \mbox{I/S} = \mbox{ Insufficient Sample} \quad \mbox{ND} = \mbox{Not detected}$

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2723883	BH1912S	5	1.00-2.00	Brown clay with gravel.

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Free cyanide in soil	Determination of free cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Cations in soil by ICP-OES	Determination of cations in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS. Individual components MCERTS accredited	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.		L080-PL	W	MCERTS

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD). For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'P analysis have been carried out in our laboratory in the office knighted.

For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

	List of HWOL Actoriyins and Operators
Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS Total or EH CU+HS Total

LABORATORY REPORT

Contract Number: PSL23/4670

Report Date: 02 August 2023

Client's Reference: G230600

Client Name: Strata Geotechnics

Kirkby Lane Pinxton

Nottinghamshire NG16 6JA

For the attention of: Jade Baxter

Contract Title: M1 J23a-J25

Date Received: 15/6/2023 Date Commenced: 15/6/2023 Date Completed: 2/8/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman (Director) (Quality Manager)

S Royle (Laboratory Manager)

L Knight S Eyre T Watkins (Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 - 7 Hexthorpe Road,

Hexthorpe, Doncaster,

DN4 0AR

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1904N	21	В	1.00	1.10	Reddish brown sandy silty GRAVEL with many cobbles.
BH1904N	2	D	2.00	2.45	Reddish brown gravelly sandy CLAY.
BH1904N	3	D	3.00	3.45	Reddish brown gravelly sandy CLAY.
BH1904N	4	D	4.00	4.45	Reddish brown gravelly sandy CLAY.
BH1904N	5	D	5.00	5.45	Reddish brown gravelly sandy CLAY.
BH1904N	6	D	6.00	6.45	Reddish brown gravelly sandy CLAY.
BH1904N	7	D	7.00	7.45	Reddish brown gravelly sandy CLAY.
BH1904N	8	D	8.00	8.40	Reddish brown gravelly sandy CLAY.
BH1904N	9	C	8.00	9.50	Reddish brown gravelly sandy CLAY.
BH1904N	10	D	9.50	9.95	Reddish brown very sandy clayey GRAVEL.
BH1904N	11	C	9.50	11.00	Reddish brown gravelly sandy CLAY with some cobbles.
BH1904N	12	C	11.00	12.00	Reddish brown gravelly sandy CLAY.
BH1904N	13	C	12.00	13.50	Brown GRAVEL.
BH1904N	14	C	13.50	15.00	Reddish brown gravelly sandy CLAY.
BH1904N	15	C	15.00	16.00	Reddish brown gravelly sandy CLAY.
BH1904N	16	C	16.00	17.00	Grey highly weathered MUDSTONE.
BH1904N	17	C	17.00	18.50	Grey highly weathered MUDSTONE.
BH1904N	18	C	19.50	20.00	Dark brown SANDSTONE.
BH1920N	4	D	1.20		Brown very sandy slightly clayey GRAVEL.

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

PSLRF011 Issue No.1 Approved by: L Pavey 03/01/2022

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1920N	5	В	1.20	1.30	Brown very sandy slightly clayey GRAVEL.
BH1920N	24	L	1.20	2.20	Brown very sandy slightly clayey GRAVEL.
BH1920N	11	D	1.60	1.70	Brown very sandy slightly clayey GRAVEL.
BH1920N	22	UT	2.20	2.80	Brown very gravelly clayey SAND.
BH1920N	23	L	2.80	3.80	Brown very sandy slightly clayey GRAVEL.
BH1920N	14	D	3.00	3.20	Brown very sandy slightly clayey GRAVEL.
BH1920N	25	L	3.80	4.80	Reddish brown gravelly sandy CLAY.
BH1920N	17	D	4.10	4.20	Reddish brown gravelly sandy CLAY.
BH1920N	7	L	5.00	6.00	Reddish brown gravelly sandy CLAY.
BH1920N	19	D	5.10	5.20	Reddish brown gravelly sandy CLAY.
BH1920N	8	C	6.00	7.00	Reddish brown gravelly sandy CLAY.
BH1920N	21	D	7.00	7.10	Reddish brown gravelly sandy CLAY.
BH1920N	9	L	7.00	8.00	Reddish brown gravelly sandy CLAY.

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

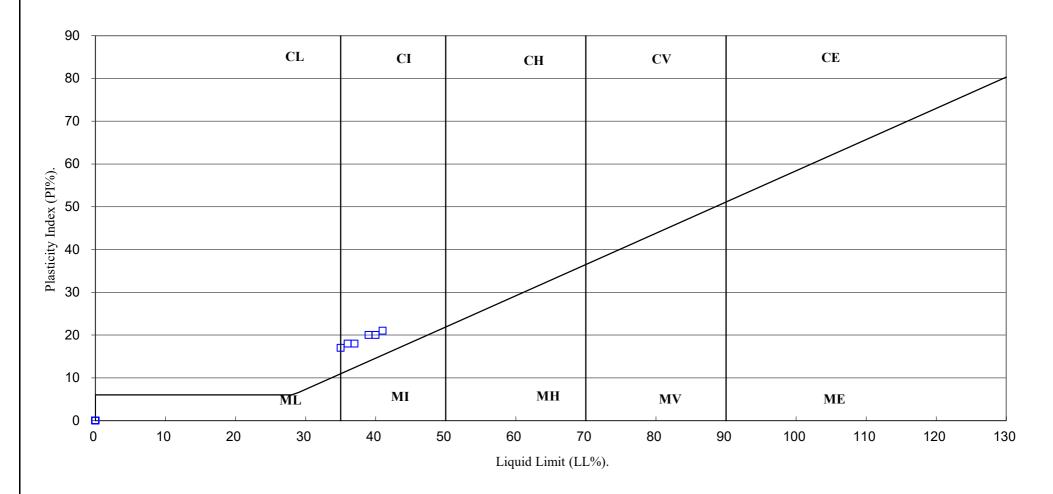
PSLRF011 Issue No.1 Approved by: L Pavey 03/01/2022

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content	Linear Shrinkage	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1904N	21	В	1.00	1.10	7.8				NP			
BH1904N	3	D	3.00	3.45	14			39	19	20	80	Intermediate Plasticity CI
BH1904N	6	D	6.00	6.45	22			41	20	21	85	Intermediate Plasticity CI
BH1904N	8	D	8.00	8.40	20			40	20	20	78	Intermediate Plasticity CI
BH1904N	10	D	9.50	9.95	3.1							
BH1904N	12	C	11.00	12.00	19							
BH1904N	14	C	13.50	15.00	21							
BH1904N	15	C	15.00	16.00	23			36	18	18	88	Intermediate Plasticity CI
BH1920N	5	В	1.20	1.30	7.0				NP			
BH1920N	11	D	1.60	1.70	5.4				NP			
BH1920N	23	L	2.80	3.80	5.8				NP			
BH1920N	14	D	3.00	3.20	6.6				NP			
BH1920N	25	L	3.80	4.80	18			35	18	17	80	Intermediate Plasticity CI
BH1920N	19	D	5.10	5.20	22			37	19	18	100	Intermediate Plasticity CI
BH1920N	21	D	7.00	7.10	17							

SYMBOLS: NP: Non Plastic


M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

PSLRF006 Issue No.1 Approved By: L Pavey 03/01/2023

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

PSLRF006 Issue No.1 Approved By: L Pavey 03/01/2023

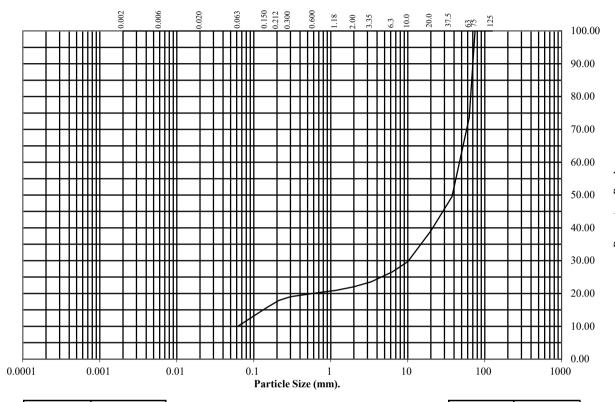
SUMMARY OF SOIL DENSITY RELATED TESTS

(BS1377: PART 2 & 4:1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content %	Bulk Density Mg/m ³	Dry Density Mg/m ³	Retained 20mm	Retained 37.5mm	Method of compaction kg	Maximum Dry Density Mg/m ³	Minimum Dry Density Mg/m ³	Remarks
BH1904N	2	D	2.00	2.45	17	2.14	1.83						
BH1904N	5	D	5.00	5.45	15	2.15	1.87						
BH1904N	8	D	8.00	8.40	20	2.05	1.71						
BH1904N	12	C	11.00	12.00	19	2.07	1.74						
BH1904N	16	С	16.00	17.00	21	2.06	1.70						
BH1904N	18	C	19.50	20.00	6.3	2.33	2.19						
BH1920N	24	L	1.20	2.20	12	2.20	1.96						
BH1920N	22	UT	2.20	2.80	7.5	2.18	2.02						
BH1920N	8	C	6.00	7.00	22	2.02	1.66						
BH1920N	9	L	7.00	8.00	13	2.18	1.93						

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600


PSLRF010 Issue No. 1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 1.00

Sample Number: 21 Base Depth(m): 1.10

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	74
37.5	49
20	39
10	30
6.3	27
3.35	24
2	22
1.18	21
0.6	20
0.3	19
0.212	18
0.15	16
0.063	10

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	26 52 12 10

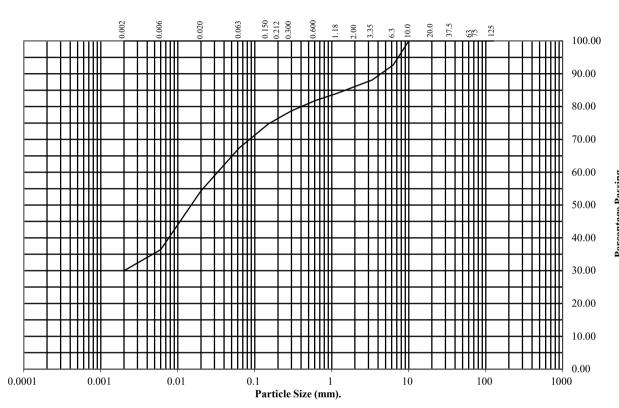
Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600

 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH1904N Top Depth (m): 3.00

Sample Number: 3 Base Depth(m): 3.45

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	93
3.35	88
2	86
1.18	84
0.6	82
0.3	79
0.212	77
0.15	75
0.063	67

Particle	Percentage
Diameter	Passing
0.02	54
0.006	36
0.002	30

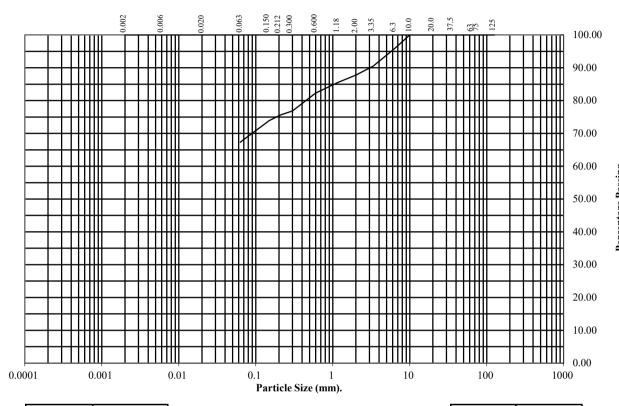
Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	14
Sand	19
Silt	37
Clay	30

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


PSLRF015 Issue No.1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 4.00

Sample Number: 4 Base Depth(m): 4.45

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	96
3.35	90
2	88
1.18	86
0.6	82
0.3	77
0.212	76
0.15	74
0.063	67

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 12 21 67

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 7.00

Sample Number: 7 Base Depth(m): 7.45

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	93
10	90
6.3	89
3.35	85
2	83
1.18	80
0.6	76
0.3	71
0.212	69
0.15	68
0.063	62

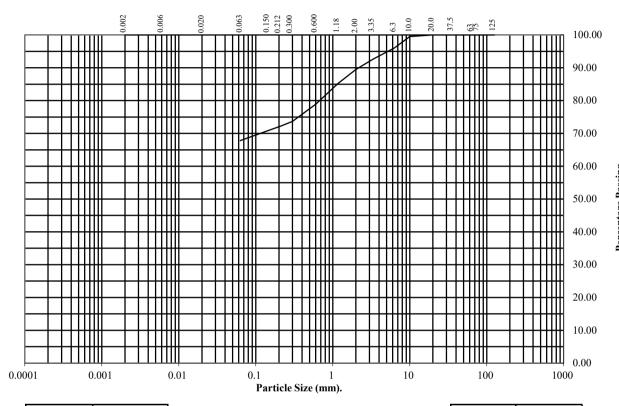
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 17 21 62

J	K	e	m	a	r	ks	

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 8.00

Sample Number: 9 Base Depth(m): 9.50

Sample Type: C

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	100		
6.3	96		
3.35	93		
2	89		
1.18	85		
0.6	79		
0.3	74		
0.212	72		
0.15	71		
0.063	68		

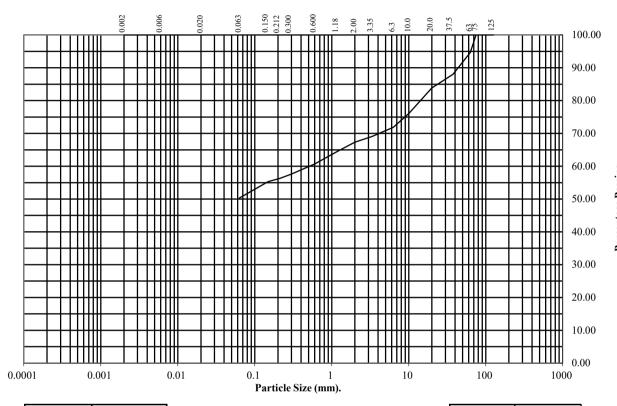
Soil	Total	
Fraction	Percentage	
Cobbles Gravel Sand Silt/Clay	0 11 21 68	

Re	em	ar	ks	:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


PSLRF015 Issue No.1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 9.50

Sample Number: 11 Base Depth(m): 11.00

Sample Type: C

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	95		
37.5	88		
20	84		
10	76		
6.3	72		
3.35	69		
2	67		
1.18	64		
0.6	61		
0.3	58		
0.212	56		
0.15	55		
0.063	50		

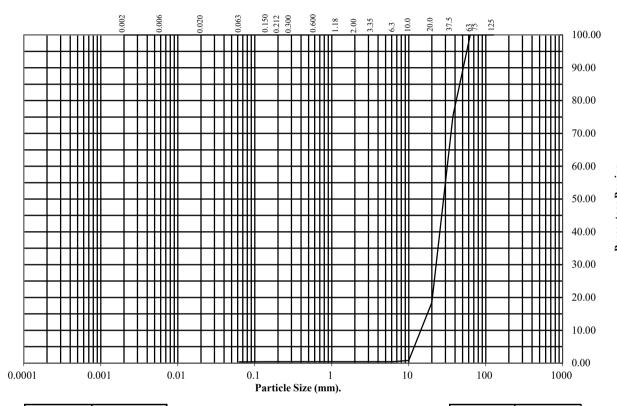
Soil	Total	
Fraction	Percentage	
Cobbles Gravel Sand Silt/Clay	5 28 17 50	

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 12.00

Sample Number: 13 Base Depth(m): 13.50

Sample Type: C

BS Test	Percentage	
Sieve (mm)	Passing	
125	100	
75	100	
63	100	
37.5	75	
20	18	
10	1	
6.3	0	
3.35	0	
2	0	
1.18	0	
0.6	0	
0.3	0	
0.212	0	
0.15	0	
0.063	0	

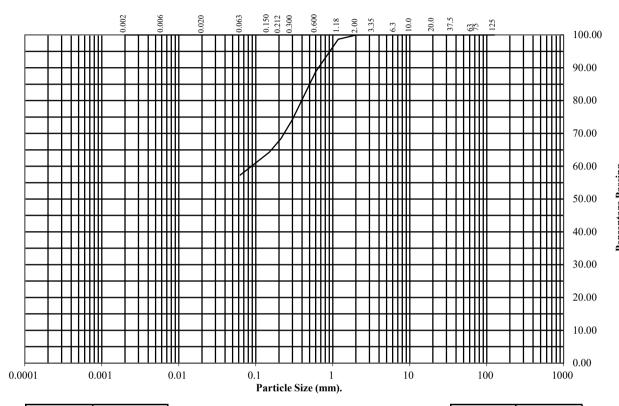
Total
Percentage
0 100 0 0

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 16.00

Sample Number: 16 Base Depth(m): 17.00

Sample Type: C

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	100
2	100
1.18	99
0.6	89
0.3	74
0.212	68
0.15	64
0.063	57

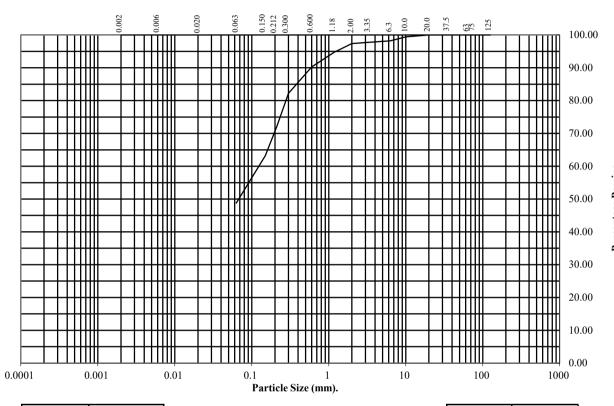
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 0 43 57

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/4670 Client Ref: G230600


 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1904N Top Depth (m): 17.00

Sample Number: 17 Base Depth(m): 18.50

Sample Type: C

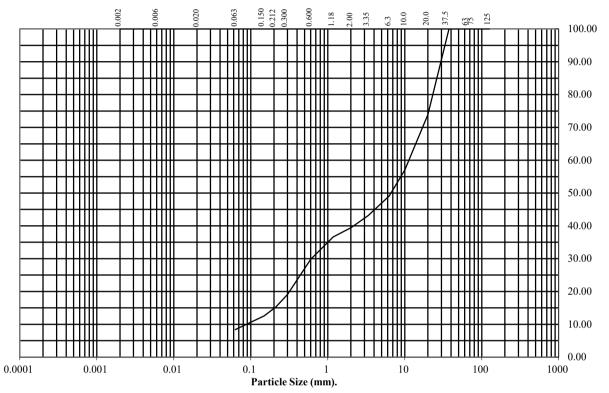
BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	99		
6.3	98		
3.35	98		
2	97		
1.18	95		
0.6	90		
0.3	82		
0.212	72		
0.15	63		
0.063	49		

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 3 48 49

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No:
PSL23/4670
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1920N Top Depth (m): 1.20

Sample Number: 4 Base Depth(m):

Sample Type: D

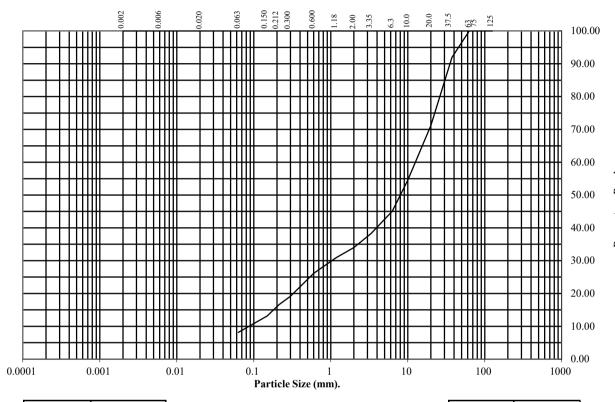
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	74
10	57
6.3	49
3.35	43
2	39
1.18	37
0.6	30
0.3	19
0.212	15
0.15	13
0.063	8

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 61 31 8

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/4670 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1920N Top Depth (m): 1.20

Sample Number: 24 Base Depth(m): 2.20

Sample Type: L

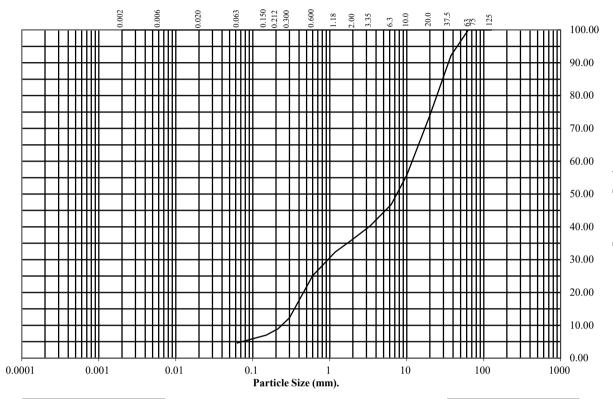
BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	92		
20	71		
10	55		
6.3	45		
3.35	38		
2	34		
1.18	31		
0.6	26		
0.3	19		
0.212	17		
0.15	13		
0.063	8		

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 66 26 8

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No:
PSL23/4670
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1920N Top Depth (m): 2.80

Sample Number: 23 Base Depth(m): 3.80

Sample Type: L

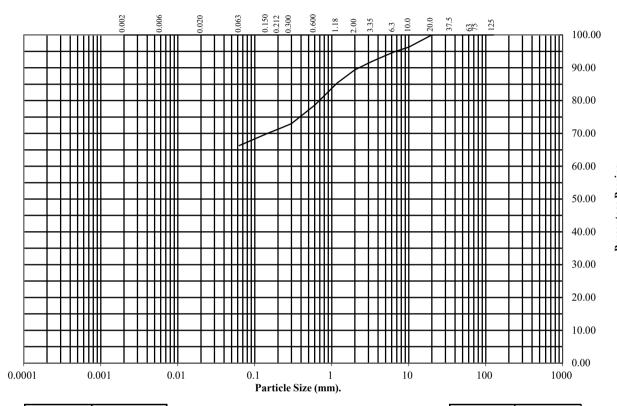
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	92
20	74
10	56
6.3	47
3.35	40
2	36
1.18	32
0.6	25
0.3	12
0.212	9
0.15	7
0.063	5

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 64 31 5

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/4670 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1920N Top Depth (m): 4.10

Sample Number: 17 Base Depth(m): 4.20

Sample Type: D

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	96		
6.3	95		
3.35	92		
2	89		
1.18	85		
0.6	79		
0.3	73		
0.212	72		
0.15	70		
0.063	66		

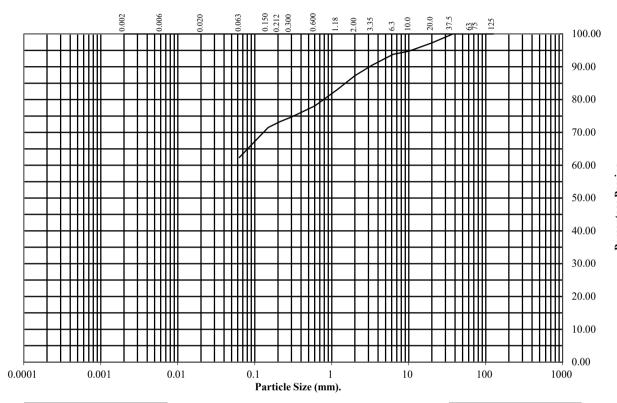
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 11 23 66

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600


 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1920N Top Depth (m): 5.00

Sample Number: 7 Base Depth(m): 6.00

Sample Type: L

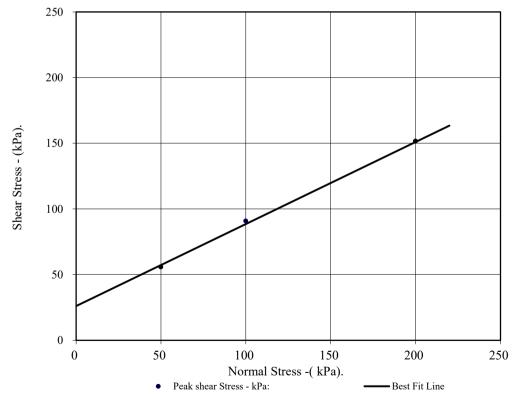
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	97
10	95
6.3	94
3.35	91
2	87
1.18	83
0.6	78
0.3	75
0.212	73
0.15	72
0.063	62

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 13 25 62

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/4670 Client Ref: G230600

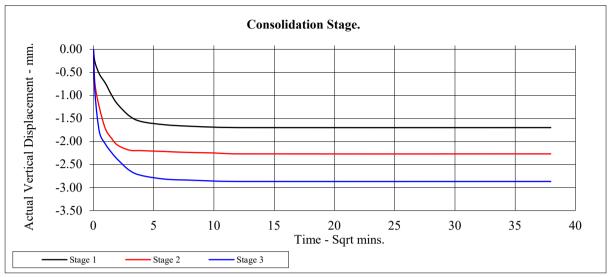
 PSLRF015
 Issue No.1
 Approved by: L Pavey
 03/01/2023

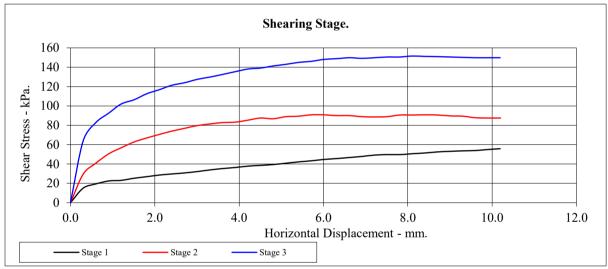
CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1904N Top Depth:			9.5	50	
Sample Number:		11	Base Depth:		11.	00
Sample Conditions:		Submerged	Sample Typ	Sample Type		
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Material test	ed passing 2mm sieve				
1 1		using 2.5kg effort.				
Sample Description:	See summar	y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions	1			
Height - mm:				20.05	20.05	20.05
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				22	22	22
Bulk Density - Mg/m3:				2.08	2.07	2.08
Dry Density - Mg/m3:				1.71	1.70	1.71
Voids Ratio:				0.549	0.555	0.553
Normal Pressure- kPa				50	100	200
		Consolidation Stag	ge			
Consolidated Height - mm:				18.35	17.78	17.18
		Shearing Stage				
Rate of Strain - mm/min				0.055	0.055	0.055
Displacement at peak shear	stress - mm			10.19	5.71	8.10
Peak shear Stress - kPa:				56	91	152
	Fi	nal Consolidated Con	ditions			
Moisture Content - %:				25	24	24
Bulk Density - Mg/m3:				2.27	2.34	2.42
Dry Density - Mg/m3:				1.82	1.88	1.95
		Peak		<u> </u>		<u> </u>
Angle of Shearing Resistance	ce:(0)				32	
Effective Cohesion - kPa:					26	

M1 J23a-J25


Contract No:
PSL23/4670
Client Ref:
G230600


PSLRF061 Approved by: L Pavey Date: 03/01/2023 Issue No.1


CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1904N	Top Depth:	9.50
Sample Number:	11	Base Depth:	11.00

M1 J23a-J25

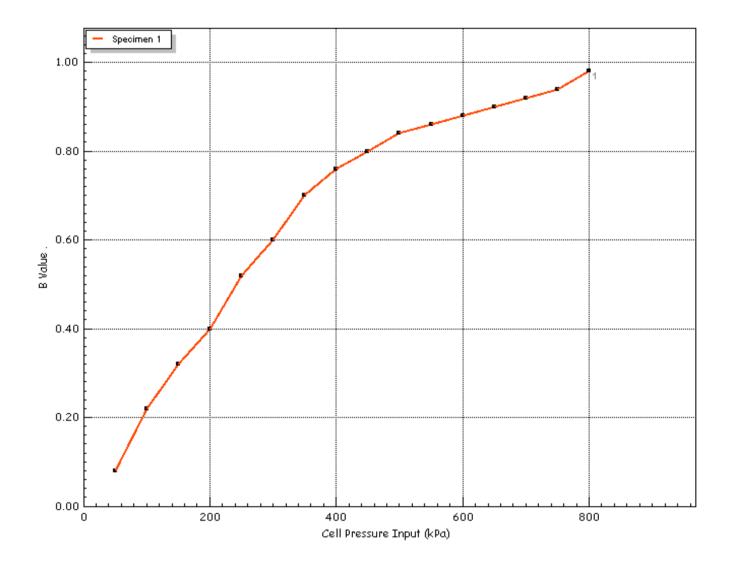
Contract No: PSL23/4670 Client Ref: G230600

PSLRF061 Approved by: L Pavey Date: 03/01/2023 Issue No.1

Consolidated Undrained

Summary Report

Sample Details	Depth	2.20-2.80m	1					
	Description Type	See summary of soil descriptions. Undisturbed, vertical orientation.						
i.	Initial Sample Length Initial Sample Diameter	L o D o	(mm) (mm)	140.0 69.5				
sketch showing specimen location in original sample	Initial Sample Weight Initial Bulk Density Particle Density	Wο ρο ρs	(gr) (Mg/m3) (Mg/m3)	1156.3 2.18 2.66				
Initial Conditions				Stage 1	2	3	4	
Initial Cell Pressure		σзі	(kPa)	850	900	1000		
Initial Back Pressure		U bi	(kPa)	800	800	800		
Membrane Thickness		mь	(mm)	0.400				
Displacement Input		LIP	(mm)	CH 2				
Load Input		N IP	(N)	CH 1				
Pore Water Pressure Input		и рюр	(kPa)	CH 3				
Sample Volume		ν,	(cc)	CH 2				
Initial Moisture		ωi	(%)	7.53				
Initial Dry Density		ρdi	(Mg/m3)	2.02				
Initial Voids Ratio		e i		0.314				
Initial Degree of Saturation		Si	(%)	64				
B Value		В		0.98				
Final Conditions								
Final Moisture		ωf	(%)	13				
Final Dry Density		ρdf	(Mg/m3)	2.07				
Final Voids Ratio		ef		0.287				
Final Degree of Saturation		Sf	(%)	100.0				
				Stage 1	2	3	4	
Failure Criteria				Max. Dev.	Max. Dev.	Max. Dev.		
Strain At Failure		εf	(%)	1.99	3.71	10.31		
Stress At Failure		(σ1-σ3)	(kPa)	184.4	302.5	541.9		
Minor Stress At Failure		σ3'	(kPa)	33.0	65.0	133.0		
Major Stress At Failure		σ1'	(kPa)	217.4	367.5	674.9		
Principal Stress Ratio At Failure		σ1'/σ3'		6.587	5.653	5.075		
PwP At Failure Criteria		u f		817.0	835.0	867.0		

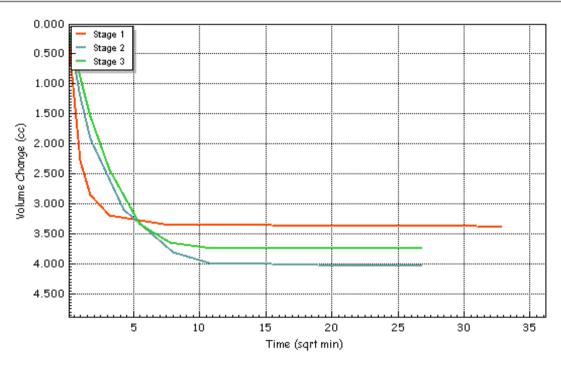

Compound

OPSL	Test Method	BS1377-8 : 1990 :	Clause 7		Test Name Test Date	BH1920N 2 03/07/2023	.20-2.80m UT22
PROFESSIONAL SOILS LABORATORY A PARENNA GROUP COMPANY					Borehole	BH1920N	
, d	Jobfile	M1 J23a-J25			Sample	2.20-2.80m	UT22
UKAS	Client	Strata Geotechnic	cs		Depth	2.20-2.80m	
4043	Operator	D.Burton	Checked	S.R	oyle	Approved	S.Royle

Consolidated Undrained

Saturation Plots

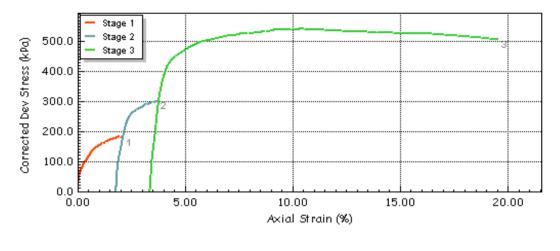
Saturation Method			Stepped	
Cell Pressure Input	σ	(kPa)	800	
Pore Water Pressure Input	и рюр	(kPa)	775	
B Value	В	•	0.98	

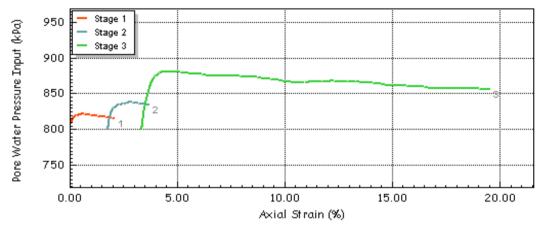

OPSL	Test Method	Test Method BS1377-8 : 1990 : Clause 7			Test Name Test Date	BH1920N 2. 03/07/2023	20-2.80m UT22
PROFESSIONAL SOILS LABORATORY A PRENEA GROUP COMPANY					Borehole	BH1920N	
, .	Jobfile	M1 J23a-J25			Sample	2.20-2.80m	UT22
UKAS	Client	Strata Geotechnic	cs		Depth	2.20-2.80m	
4043	Operator	D.Burton	Checked	S.R	oyle	Approved	S.Royle

Consolidated Undrained

Notes

Consolidation Plots

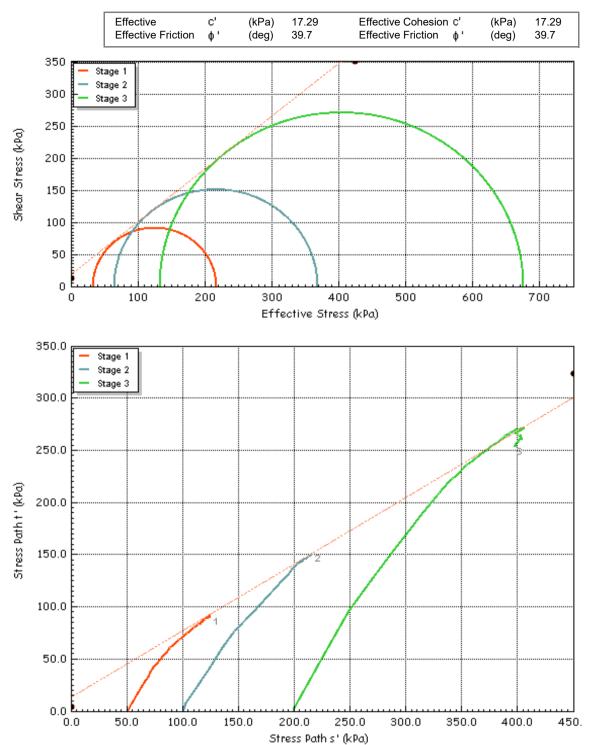

Initial Conditions			Stage 1	2	3
nitial Cell Pressure	σз	(kPa)	850	900	1000
nitial Back Pressure	и ы	(kPa)	800	800	800
Pore Water Pressure Input	и рмр	(kPa)	813	821	823
Drainage Method			Radial+Or	ne End	
Final Conditions			<u> </u>	_	_
			Stage 1	2	3
PWP Dissipation %	U%	(%)	100.00	100.00	100.00
Volumetric Strain	εν%	(%)	0.64	0.76	0.70
Corrected Length	Lc	(mm)	139.7	136.4	133.4
Corrected Area	Αc	(cm2)	37.78	38.40	38.97
Corrected Volume	Vс	(cc)	527.736	523.703	519.967
100	t 100	(min)	6.60	27.84	27.84
Consolidation	cν	(m2/year)	0.150	0.036	0.037
Compressibility	mγ	(m2/MN)	0.489	0.362	0.306
Test Time	t F	(h:m:s)	02:00:00	02:00:00	02:00:00
Estimated Strain to Failure	ε%	(%)	5.0	5.0	5.0
Shear Machine Speed	dг	(mm/min)	0.05821	0.05821	0.05821




OPSL	Test Method	BS1377-8 : 1990	: Clause 7		Test Name Test Date	BH1920N 2 03/07/2023	2.20-2.80m UT22
PROFESSIONAL SOILS LABORATORY A PRENNA GROUP COMPANY					Borehole	BH1920N	
[Jobfile Client	M1 J23a-J25 Strata Geotechni	rs		Sample Depth	2.20-2.80m 2.20-2.80m	
TESTING 4043	Operator	D.Burton	Checked	S.R		Approved	S.Royle

Consolidated Undrained

Shear Stage Plots



OPSL	Test Method	BS1377-8 : 1990	0 : Clause 7		Test Name Test Date	BH1920N 2. 03/07/2023	20-2.80m UT22
PROFESSIONAL SOILS LABORATORY A PHENRA GROUP COMPANY					Borehole	BH1920N	
, .	Jobfile	M1 J23a-J25			Sample	2.20-2.80m	UT22
[(H)	Client	Strata Geotechi	nics		Depth	2.20-2.80m	
4043	Operator	D.Burton	Checked	S.R	oyle	Approved	S.Royle

Consolidated Undrained

Shear Stage Plots

OPSL	Test Method	BS1377-8 : 1990	: Clause 7		Test Name Test Date	BH1920N 2. 03/07/2023	20-2.80m UT22
PROFESSIONAL SOILS LABORATORY A PRENIA GROUP COMPANY					Borehole	BH1920N	
, .	Jobfile	M1 J23a-J25			Sample	2.20-2.80m	UT22
UKAS	Client	Strata Geotechn	ics		Depth	2.20-2.80m	
4043	Operator	D.Burton	Checked	S.R	oyle	Approved	S.Royle

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		Area	D _e ²	D _e	Failure 1	Load (P)	Is	Corr Fac	I_{s50}	Failure Type	Remarks
Number		KCI	Турс	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
BH1904N	16.00	16	A	Perp	100	30	3000	3819.72	61.80	-	0.28	0.07	1.100	0.08	Valid	
BH1904N	16.00	16	A	Perp	100	40	4000	5092.96	71.36	-	0.37	0.07	1.174	0.09	Valid	
BH1904N	16.00	16	A	Perp	100	32	3200	4074.37	63.83	-	0.22	0.05	1.116	0.06	Valid	
BH1904N	16.00	16	A	Perp	100	40	4000	5092.96	71.36	-	0.91	0.18	1.174	0.21	Valid	
BH1904N	16.00	16	A	Perp	100	30	3000	3819.72	61.80	-	0.61	0.16	1.100	0.18	Valid	
BH1904N	16.00	16	A	Perp	100	28	2800	3565.07	59.71	ı	0.84	0.24	1.083	0.26	Valid	
BH1904N	16.00	16	A	Perp	100	31	3100	3947.04	62.83	-	0.93	0.24	1.108	0.26	Valid	
BH1904N	16.00	16	A	Perp	100	34	3400	4329.01	65.80	ı	0.45	0.10	1.131	0.12	Valid	
BH1904N	16.00	16	A	Perp	100	36	3600	4583.66	67.70	ı	0.52	0.11	1.146	0.13	Valid	
BH1904N	16.00	16	A	Perp	100	30	3000	3819.72	61.80	ı	0.55	0.14	1.100	0.16	Valid	
BH1904N	19.50	18	A	Perp	100	60	6000	7639.44	87.40	-	8.26	1.08	1.286	1.39	Valid	
BH1904N	19.50	18	A	Perp	100	41	4100	5220.28	72.25	ı	7.52	1.44	1.180	1.70	Valid	
BH1904N	19.50	18	A	Perp	100	31	3100	3947.04	62.83	ı	13.11	3.32	1.108	3.68	Valid	
BH1904N	19.50	18	A	Perp	100	30	3000	3819.72	61.80	ı	11.88	3.11	1.100	3.42	Valid	
BH1904N	19.50	18	A	Perp	100	36	3600	4583.66	67.70	ı	8.12	1.77	1.146	2.03	Valid	
BH1904N	19.50	18	A	Perp	100	40	4000	5092.96	71.36	-	11.08	2.18	1.174	2.55	Valid	
BH1904N	19.50	18	A	Perp	100	45	4500	5729.58	75.69	ı	9.27	1.62	1.205	1.95	Valid	
BH1904N	19.50	18	A	Perp	100	34	3400	4329.01	65.80	ı	7.45	1.72	1.131	1.95	Valid	
BH1904N	19.50	18	A	Perp	100	36	3600	4583.66	67.70	-	8.65	1.89	1.146	2.16	Valid	
BH1904N	19.50	18	A	Perp	100	41	4100	5220.28	72.25	-	9.78	1.87	1.180	2.21	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

PSLRF078 Approved by: L Pavey Date: 03/01/2023 Issue No.1

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		Area	D _e ²	D _e	Failure 1	Load (P)	I_s	Corr Fac	I_{s50}	Failure Type	Remarks
Tumber		1401	1,100	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Type	
BH1920N	7.00	9	A	Perp	100	58	5800	7384.79	85.93	ı	0.28	0.04	1.276	0.05	Valid	
BH1920N	7.00	9	A	Perp	100	31	3100	3947.04	62.83	-	0.31	0.08	1.108	0.09	Valid	
BH1920N	7.00	9	A	Perp	100	40	4000	5092.96	71.36	ı	0.29	0.06	1.174	0.07	Valid	
BH1920N	7.00	9	A	Perp	100	56	5600	7130.14	84.44	-	0.51	0.07	1.266	0.09	Valid	
BH1920N	7.00	9	A	Perp	100	30	3000	3819.72	61.80	ı	0.41	0.11	1.100	0.12	Valid	
BH1920N	7.00	9	A	Perp	100	38	3800	4838.31	69.56	ı	0.33	0.07	1.160	0.08	Valid	
BH1920N	7.00	9	A	Perp	100	40	4000	5092.96	71.36	-	0.27	0.05	1.174	0.06	Valid	
BH1920N	7.00	9	A	Perp	100	31	3100	3947.04	62.83	ı	0.25	0.06	1.108	0.07	Valid	
BH1920N	7.00	9	A	Perp	100	33	3300	4201.69	64.82	-	0.40	0.10	1.124	0.11	Valid	
BH1920N	7.00	9	A	Perp	100	28	2800	3565.07	59.71	ı	0.37	0.10	1.083	0.11	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

M1 J23a-J25

Contract No:
PSL23/4670
Client Ref:
G230600

PSLRF078 Approved by: L Pavey Date: 03/01/2023 Issue No.1

Professional Soils Laboratory 5/7 Hexthorpe Road@ Hexthorpe@ Doncaster@ DN4 OAR

Analytical Test Report: L23/03923/PSL - 23-35883

Your Project Reference: PSL23/4670 M1 J23a-J25

Your Order Number: PSL Samples Received / Instructed: 28/07/2023 / 28/07/2023

Report Issue Number: 1 Sample Tested: 28/07 to 03/08/2023

Samples Analysed: 2 soil samples Report issued: 03/08/2023

Signed

James Gane

Analytical Services Manager

CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Ke

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 26.07.2

Issued by: J. Gane Issue No: 4

nasue no.

Project Reference - PSL23/4670 M1 J23a-J25

Analytical Test Results - Chemical Analysis

Lab Reference			307130	307131
Client Sample ID			-	-
Client Sample Location			BH1904N	BH1920N
Client Sample Type			С	В
Client Sample Number			14	5
Depth - Top (m)			13.50	1.20
Depth - Bottom (m)			15.00	1.30
Date of Sampling			-	-
Time of Sampling			-	-
Sample Matrix			Clay	Sand
Determinant	Units	Accreditation		
Water soluble sulphate (as SO ₄)	(mg/l)	u	39	18
Acid Soluble Sulphate	(%)	u	0.05	0.02
Total Sulphur	(%)	UKAS	0.02	0.02
pH Value	pH Units	MCERTS	8.7	8.4

L23/03923/PSL - 23-35883

Project Reference - PSL23/4670 M1 J23a-J25

Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
307130	-	BH1904N	С	14	Mottled orange grey silty clay	-	-	45
307131	-	BH1920N	В	5	Mottled brown grey gravelly silty sand	-	-	45

Project Reference - PSL23/4670 M1 J23a-J25

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
307130	-	BH1904N	С	14	
307131	-	BH1920N	В	5	

Project Reference - PSL23/4670 M1 J23a-J25

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

Project Reference - PSL23/4670 M1 J23a-J25

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	est Deviations
307130	-	BH1904N	С	14	А
307131	-	BH1920N	В	5	A

Professional Soils Laboratory 5/7 Hexthorpe Road Hexthorpe Doncaster DN4 OAR

Analytical Test Report: L23/04024/PSL - 23-36539

Your Project Reference: PSL23/4670

Your Order Number: PSL Samples Received / Instructed: 03/08/2023 / 03/08/2023

Report Issue Number: 1 Sample Tested: 03/08 to 11/08/2023

Samples Analysed: 7 soil samples Report issued: 11/08/2023

Signed

James Gane

Analytical Services Manager

CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with CTS method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 26.07.23

Issued by: J. Gane

Issue No: 4

Rev No: 2

Leicester LE1 4DH

L23/04024/PSL - 23-36539

Project Reference - PSL23/4670

Analytical Test Results - Chemical Analysis

Lab Reference			310592	310593	310594	310595	310596	310597	310598
Client Sample ID									
			B11400411			2112241		21122211	B.1402011
Client Sample Location			BH1904N	BH1904N	BH1904N	BH1904N	BH1920N	BH1920N	BH1920N
Client Sample Type			-	-	-	-	-	-	-
Client Sample Number			21	5	10	18	15	18	20
Depth - Top (m)			1.00	5.00	9.50	19.50	3.60	4.20	5.60
Depth - Bottom (m)			1.10	5.45	9.95	20.00	3.80	4.40	5.70
Date of Sampling			-	-	-	-	-	-	-
Time of Sampling			-	-	-	-	-	-	-
Sample Matrix			Sand	Clay	Clay	Sand	Sand	Sand	Sand
Determinant	Units	Accreditation							
Water soluble sulphate (as SO ₄)	(mg/l)	u	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Acid Soluble Sulphate	(%)	u	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total Sulphur	(%)	UKAS	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
pH Value	pH Units	MCERTS	8.2	7.6	7.3	7.5	7.4	6.4	6.1

L23/04024/PSL - 23-36539 Project Reference - PSL23/4670 Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
310592	-	BH1904N	В	21	Reddish brown sandy gravel		-	28
310593	-	BH1904N	D	5	Reddish brown slightly gravelly slightly sandy clay	-		88
310594	-	BH1904N	D	10	Reddish brown gravelly slightly sandy clay	-		41
310595	-	BH1904N	С	18	Brown sandstone gravel	-		100
310596	-	BH1920N	D	15	Reddish brown slightly gravelly slightly sandy clay	-	-	29
310597	-	BH1920N	D	18	Reddish brown slightly gravelly slightly sandy clay	-	-	90
310598		BH1920N	D	20	Reddish brown slightly gravelly slightly sandy clay	-		81

L23/04024/PSL - 23-36539

Project Reference - PSL23/4670

Sample Comments

					•
Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
310592	-	BH1904N	В	21	
310593	-	BH1904N	D	5	
310594	-	BH1904N	D	10	
310595	-	BH1904N	С	18	
310596	-	BH1920N	D	15	
310597		BH1920N	D	18	
310598		BH1920N	D	20	

L23/04024/PSL - 23-36539

Project Reference - PSL23/4670

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation			Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

Leicester LE1 4DH

4161

L23/04024/PSL - 23-36539

Project Reference - PSL23/4670

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number Test	Deviations
310592	-	BH1904N	В	21	A
310593	-	BH1904N	D	5	A
310594	-	BH1904N	D	10	A
310595	-	BH1904N	c	18	A
310596		BH1920N	D	15	Α
310597		BH1920N	D	18	A
310598		BH1920N	D	20	A

LABORATORY REPORT

Contract Number: PSL23/6014

Report Date: 08 August 2023

Client's Reference: G230600

Client Name: Strata Geotechnics

Kirkby Lane Pinxton

Nottinghamshire NG16 6JA

For the attention of: Jade Baxter

Contract Title: M1 J23a-J25

Date Received: 21/7/2023 Date Commenced: 21/7/2023 Date Completed: 8/8/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle
(Director) (Quality Manager) (Laboratory Manager)

L Knight S Eyre T Watkins
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

5-7 Hexthorpe Road,

Hexthorpe, Doncaster,

DN4 0AR

Page 1 of

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1851S	11	L	1.20	2.00	Brown very gravelly very sandy CLAY.
BH1851S	2	D	3.00	3.45	Brown slightly sandy CLAY.
BH1851S	4	D	5.00	5.45	Brown mottled grey sandy CLAY
BH1851S	15	L	5.00	6.00	Brown mottled grey slightly gravelly slightly sandy CLAY.
BH1851S	5	D	6.00	6.45	Brown sandy CLAY.
BH1851S	16	L	6.00	7.00	Brown slightly sandy CLAY.
BH1851S	8	D	8.00	8.45	Brown slightly gravelly slightly sandy CLAY.
BH1851S	10	D	9.60	9.78	Brown mottled grey sandy CLAY.
BH1937N	11	В	1.20	2.00	Brown very gravelly sandy CLAY.
BH1937N	18	SD	2.00	2.45	Brown slightly gravelly sandy CLAY.
BH1937N	12	L	2.00	3.00	Brown slightly gravelly slightly sandy CLAY.
BH1937N	3	D	3.00	3.45	Brown slightly gravelly very sandy CLAY.
BH1937N	13	L	3.00	3.50	Brown very gravelly slightly sandy CLAY.

M1 J23a-J25

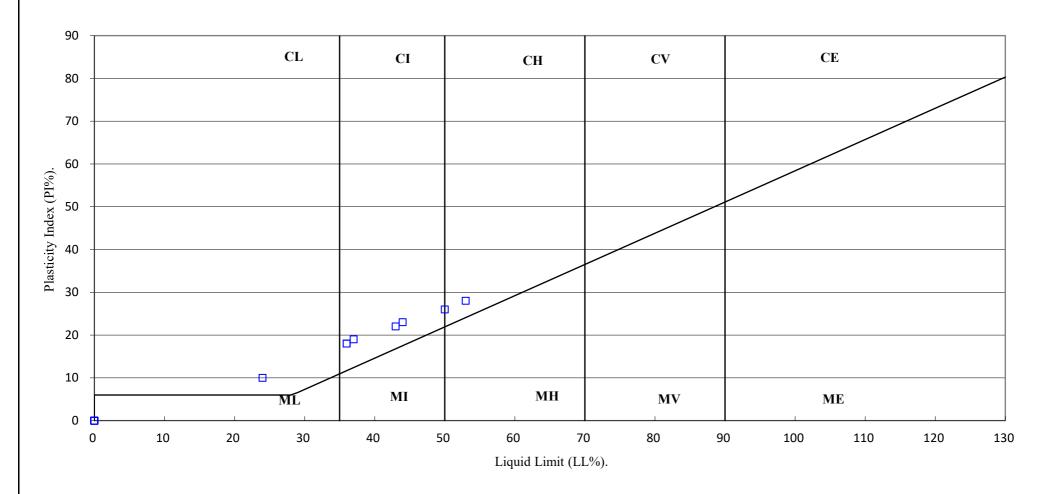
Contract No:
PSL23/6014
Client Ref:
G230600

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole	Comple	Commis	Ton	Daga	Moisture Content	Linear Shrinkage	Particle Density	Liquid Limit	Plastic Limit	Plasticity Index	Passing .425mm	Remarks
Number	Sample Number	Sample Type	Top Depth	Base Depth	Content %	Siiriiikage %	Mg/m ³	211111t %	211111t %	muex %	.425IIIII %	Remarks
Number	Number	Турс	m m	_						Clause 5.4	/0	
DII10510	11	τ		m 2.00	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3		70	I am Dia sticke CI
BH1851S	11	L	1.20	2.00	14			24	14	10	70	Low Plasticity CL
BH1851S	2	D	3.00	3.45	37			50	24	26	99	High Plasticity CH
BH1851S	4	D	5.00	5.45	30			36	18	18	100	Intermediate Plasticity CI
BH1851S	5	D	6.00	6.45	26			43	21	22	100	Intermediate Plasticity CI
BH1851S	8	D	8.00	8.45	26			53	25	28	95	High Plasticity CH
BH1851S	10	D	9.60	9.78	20			44	21	23	100	Intermediate Plasticity CI
BH1937N	11	В	1.20	2.00	14			36	18	18	72	Intermediate Plasticity CI
BH1937N	18	SD	2.00	2.45	16			37	18	19	96	Intermediate Plasticity CI

SYMBOLS: NP: Non Plastic



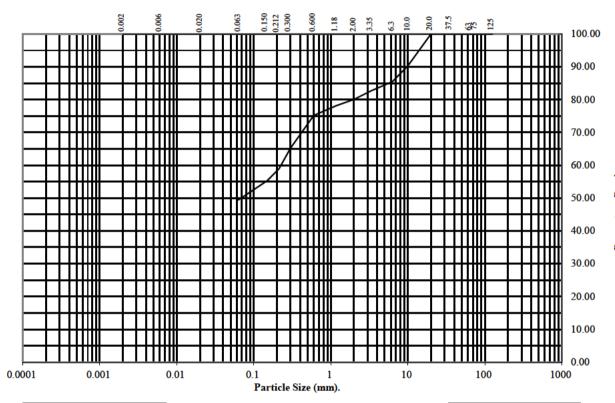
M1 J23a-J25

Contract No:
PSL23/6014
Client Ref:
G230600

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

M1 J23a-J25


Contract No:
PSL23/6014
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1851S Top Depth (m): 1.20

Sample Number: 11 Base Depth(m): 2.00

Sample Type: L

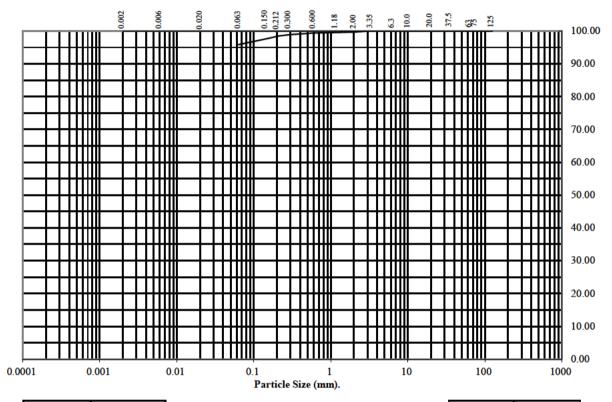
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	90
6.3	85
3.35	83
2	80
1.18	78
0.6	75
0.3	65
0.212	59
0.15	55
0.063	49

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 20 31 49

R	e	m	aj	rk	S	:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6014 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1851S Top Depth (m): 3.00

Sample Number: 2 Base Depth(m): 3.45

Sample Type: D

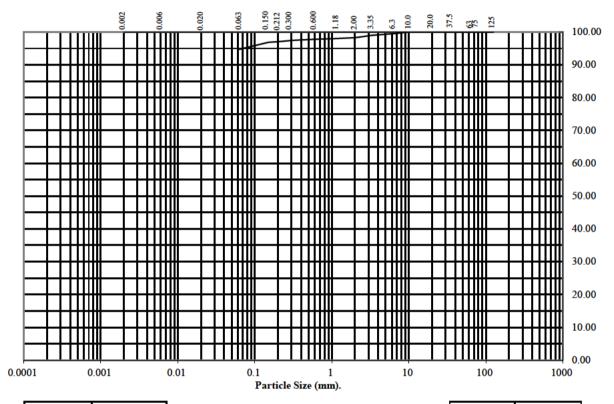
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	100
2	100
1.18	100
0.6	99
0.3	99
0.212	98
0.15	98
0.063	96

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	0
Sand	4
Silt/Clay	96

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6014 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1851S Top Depth (m): 5.00

Sample Number: 15 Base Depth(m): 6.00

Sample Type: L

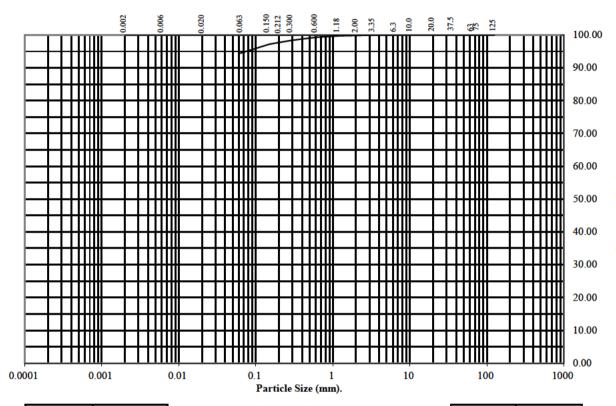
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	99
3.35	99
2	98
1.18	98
0.6	98
0.3	97
0.212	97
0.15	97
0.063	95

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 2 3 95

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6014 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1851S Top Depth (m): 6.00

Sample Number: 16 Base Depth(m): 7.00

Sample Type: L

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	100
2	100
1.18	100
0.6	99
0.3	98
0.212	98
0.15	97
0.063	94

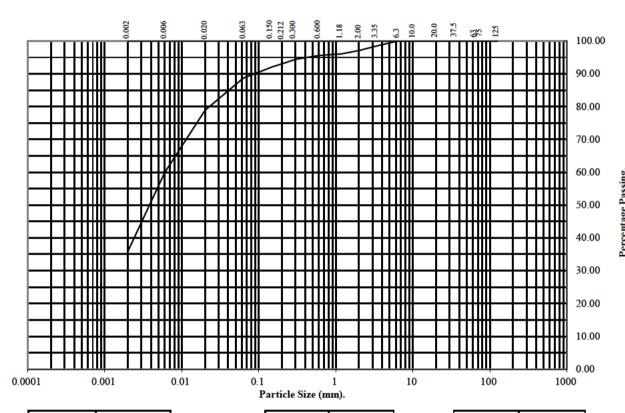
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 0 6 94

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6014 Client Ref: G230600


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH1851S Top Depth (m): 8.00

Sample Number: 8 Base Depth(m): 8.45

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	98
2	97
1.18	96
0.6	96
0.3	94
0.212	93
0.15	92
0.063	89

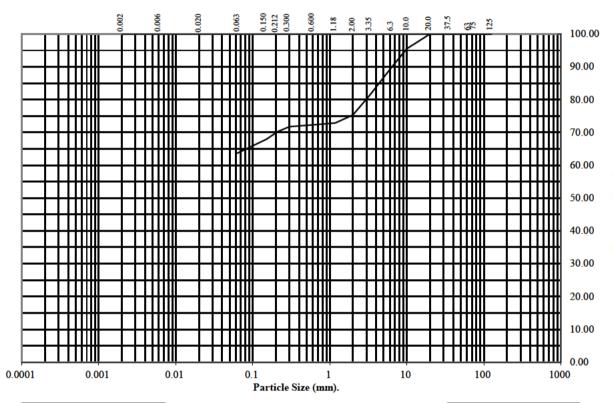
Particle	Percentage
Diameter	Passing
0.02	79
0.006	60
0.002	36

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	3
Sand	8
Silt	53
Clay	36

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6014 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1937N Top Depth (m): 1.20

Sample Number: 11 Base Depth(m): 2.00

Sample Type: B

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	96
6.3	90
3.35	82
2	75
1.18	73
0.6	72
0.3	72
0.212	70
0.15	68
0.063	64

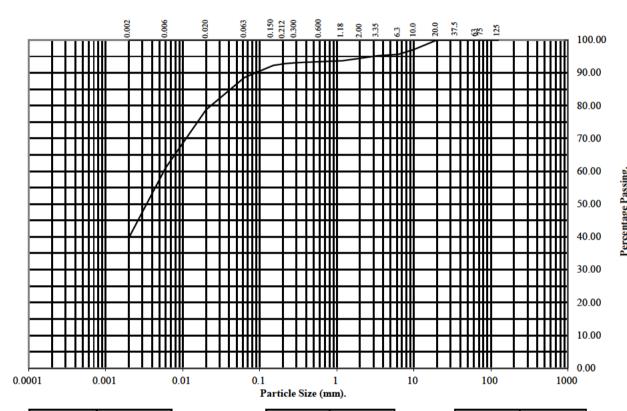
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 25 11 64

R	e	m	a	r	ks	

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6014 Client Ref: G230600


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH1937N Top Depth (m): 2.00

Sample Number: 12 Base Depth(m): 3.00

Sample Type: L

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	97
6.3	96
3.35	95
2	94
1.18	94
0.6	93
0.3	93
0.212	93
0.15	92
0.063	89

Particle	Percentage
Diameter	Passing
0.02	79
0.006	61
0.002	40

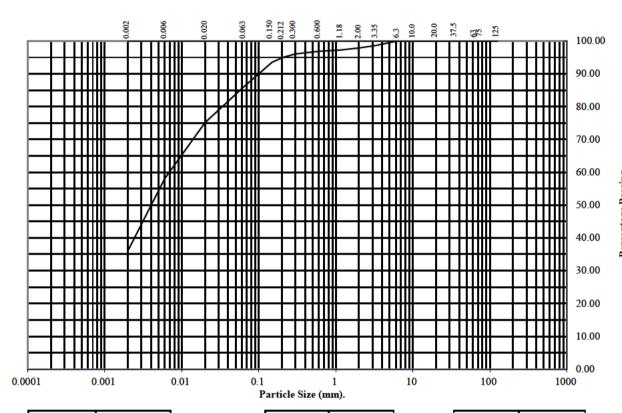
Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	6
Sand	5
Silt	49
Clay	40

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6014 Client Ref: G230600


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH1937N Top Depth (m): 2.00

Sample Number: 18 Base Depth(m): 2.45

Sample Type: SD

BS Test	Percentage	
Sieve (mm)	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	100	
10	100	
6.3	100	
3.35	99	
2	98	
1.18	97	
0.6	97	
0.3	96	
0.212	95	
0.15	94	
0.063	86	

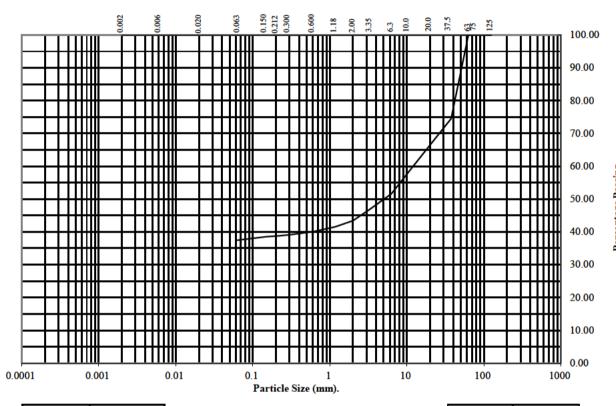
Particle	Percentage
Diameter	Passing
0.02	75
0.006	58
0.002	36

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	2
Sand	12
Silt	50
Clay	36

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6014 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1937N Top Depth (m): 3.00

Sample Number: 13 Base Depth(m): 3.50

Sample Type: L

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	75
20	66
10	58
6.3	52
3.35	47
2	43
1.18	42
0.6	40
0.3	39
0.212	39
0.15	39
0.063	37

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 57 6 37

R	em	ar	ks

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6014 Client Ref: G230600

SUMMARY OF SOIL DENSITY RELATED TESTS

(BS1377: PART 2 & 4:1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content	Bulk Density Mg/m ³	Dry Density Mg/m ³	Retained 20mm	Retained 37.5mm	Method of compaction kg	Maximum Dry Density Mg/m ³	Minimum Dry Density Mg/m ³	Remarks
BH1851S	11	L	1.20	2.00	14	2.10	1.84						
BH1851S	2	D	3.00	3.45	37	1.73	1.26						
BH1851S	8	D	8.00	8.45	26	1.89	1.50						
BH1851S	10	D	9.60	9.78	20	1.94	1.62						
BH1937N	18	SD	2.00	2.45	16	1.92	1.66						
BH1937N	3	D	3.00	3.45	15	2.03	1.77						
BH1937N	24	CSS	3.74	3.85	13	2.18	1.93						
BH1937N	26	CSS	4.85	5.00	9.1	2.25	2.06						
BH1937N	28	CSS	6.15	6.35	12	2.21	1.97						
BH1937N	30	CSS	8.52	8.61	13	2.18	1.93						

M1 J23a-J25

Contract No:
PSL23/6014
Client Ref:
G230600

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimer (m		Area	D _e ²	D _e	Failure 1	Load (P)	Is	Corr Fac	I_{s50}	Failure Type	Remarks
Number		KCI	Турс	Par / Perp	W	D	(mm2)		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
BH1937N	3.74	CSS	A	Perp	100	32	3200	4074.37	63.83	-	1.22	0.30	1.116	0.33	Valid	
BH1937N	3.74	CSS	A	Perp	100	43	4300	5474.93	73.99	-	1.30	0.24	1.193	0.28	Valid	
BH1937N	3.74	CSS	A	Perp	100	30	3000	3819.72	61.80	-	0.94	0.25	1.100	0.27	Valid	
BH1937N	3.74	CSS	A	Perp	100	40	4000	5092.96	71.36	-	1.26	0.25	1.174	0.29	Valid	
BH1937N	3.74	CSS	A	Perp	100	33	3300	4201.69	64.82	-	1.27	0.30	1.124	0.34	Valid	
BH1937N	4.85	CSS	A	Perp	100	38	3800	4838.31	69.56	ı	3.06	0.63	1.160	0.73	Valid	
BH1937N	4.85	CSS	A	Perp	100	43	4300	5474.93	73.99	-	4.06	0.74	1.193	0.88	Valid	
BH1937N	4.85	CSS	I	Perp	45	32	1440	1833.46	42.82	ı	0.86	0.47	0.933	0.44	Valid	
BH1937N	4.85	CSS	I	Perp	37	30	1110	1413.30	37.59	-	1.08	0.76	0.880	0.67	Valid	
BH1937N	4.85	CSS	I	Perp	41	28	1148	1461.68	38.23	ı	0.92	0.63	0.886	0.56	Valid	
BH1937N	6.15	CSS	A	Perp	100	38	3800	4838.31	69.56	-	1.56	0.32	1.160	0.37	Valid	
BH1937N	6.15	CSS	A	Perp	100	42	4200	5347.61	73.13	ı	1.45	0.27	1.187	0.32	Valid	
BH1937N	6.15	CSS	A	Perp	100	32	3200	4074.37	63.83	ı	1.14	0.28	1.116	0.31	Valid	
BH1937N	6.15	CSS	A	Perp	100	28	2800	3565.07	59.71	ı	0.96	0.27	1.083	0.29	Valid	
BH1937N	6.15	CSS	A	Perp	100	32	3200	4074.37	63.83	ı	1.37	0.34	1.116	0.38	Valid	
BH1937N	8.52	CSS	A	Perp	100	36	3600	4583.66	67.70	-	1.33	0.29	1.146	0.33	Valid	
BH1937N	8.52	CSS	I	Perp	48	30	1440	1833.46	42.82	ı	1.06	0.58	0.933	0.54	Valid	
BH1937N	8.52	CSS	I	Perp	50	47	2350	2992.11	54.70	ı	1.22	0.41	1.041	0.42	Valid	
BH1937N	8.52	CSS	I	Perp	38	30	1140	1451.49	38.10	-	0.74	0.51	0.885	0.45	Valid	
BH1937N	8.52	CSS	I	Perp	45	36	1620	2062.65	45.42	-	0.89	0.43	0.958	0.41	Valid	
														-		

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

A = Axial, D = Diametral, I = Irregular

M1 J23a-J25

Contract No:
PSL23/6014
Client Ref:
G230600

PSLRF078 Approved by: L Pavey Date: 03/01/2023 Issue No.1

SUMMARY OF POINT LOAD TEST RESULTS

ISRM Suggested Methods: 2007

Borehole Number	Depth (m)	Sample Ref	Test Type	Orientation	Dimei (m		D _e ²	\mathbf{D}_{e}	Failur	e Load	I _s	Corr Fac	I _{s50}	Failure Type	Remarks
Tulliou	()	1401	1340	Par / Perp	L	D		(mm)	(Mpa)	(kN)	(MPa)	F	(MPa)	Турс	
BH1937N	3.74	CSS	D	Par	-	100	10000	100.00	-	1.01	0.101	1.366	0.14	Valid	
BH1937N	3.74	CSS	D	Par	-	100	10000	100.00	-	1.06	0.106	1.366	0.14	Valid	
BH1937N	3.74	CSS	D	Par		100	10000	100.00	-	0.88	0.088	1.366	0.12	Valid	
BH1937N	3.74	CSS	D	Par	-	100	10000	100.00	-	0.99	0.099	1.366	0.14	Valid	
BH1937N	3.74	CSS	D	Par		100	10000	100.00	-	0.87	0.087	1.366	0.12	Valid	
BH1937N	4.85	CSS	D	Par	-	100	10000	100.00	-	2.40	0.240	1.366	0.33	Valid	
BH1937N	4.85	CSS	D	Par	-	100	10000	100.00	-	3.11	0.311	1.366	0.42	Valid	
BH1937N	6.15	CSS	D	Par	-	100	10000	100.00	-	1.12	0.112	1.366	0.15	Valid	
BH1937N	6.15	CSS	D	Par	-	100	10000	100.00	-	1.20	0.120	1.366	0.16	Valid	
BH1937N	6.15	CSS	D	Par	-	100	10000	100.00	-	0.88	0.088	1.366	0.12	Valid	
BH1937N	6.15	CSS	D	Par	-	100	10000	100.00	-	0.77	0.077	1.366	0.11	Valid	
BH1937N	6.15	CSS	D	Par		100	10000	100.00	-	1.11	0.111	1.366	0.15	Valid	
BH1937N	8.52	CSS	D	Par	-	100	10000	100.00	-	0.88	0.088	1.366	0.12	Valid	

*Note All testing carried out on samples at as received water content

Par = parallel, Perp = perpendicular, U = Random

M1 J23a-J25

Contract No:
PSL23/6014
Client Ref:
G230600

PSLRF078 Approved by: L Pavey Date: 03/01/2023 Issue No.1

7 - 11 Harding Street Leicester

Professional Soils Laboratory

5/7 Hexthorpe Road® Hexthorpe® Doncaster® DN4 OAR

Analytical Test Report: L23/04156/PSL - 23-36144

Your Project Reference: PSL23/6014 M1 J23A-J25

Your Order Number: PSL23/6014 Samples Received / Instructed: 07/08/2023 / 07/08/2023

Report Issue Number: 1 Sample Tested: 07/08 to 14/08/2023

Samples Analysed: 2 soil samples Report issued: 14/08/2023

James Gane

Analytical Services Manager

CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30 °C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with CTS method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Key

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 26.07.23

Issued by: J. Gane

Issue No: 4

Rev No: 2

L23/04156/PSL - 23-36144

Project Reference - PSL23/6014 M1 J23A-J25

Analytical Test Results - Chemical Analysis

Lab Reference			308325	308326
Client Sample ID			_	_
Client Sample 10				
			BU140545	B11400#**
Client Sample Location			BH1851S	BH1937N
Client Sample Type			-	-
Client Sample Number			-	-
Depth - Top (m)			1.20	1.20
Depth - Bottom (m)			2.00	2.00
Date of Sampling			-	-
Time of Sampling			-	-
Sample Matrix			Clay	Clay
Determinant	Units	Accreditation		
Water soluble sulphate (as SO ₄)	(mg/l)	u	< 10	41
Acid Soluble Sulphate	(%)	u	0.01	0.04
Total Sulphur	(%)	UKAS	0.01	0.02
pH Value	pH Units	MCERTS	8.3	9.1
Water Soluble Chloride	(mg/l)	u	140	120
Water Soluble Nitrate (As NO ₃)	(mg/l)	u	< 1.0	< 1.0
Water Soluble Magnesium	(mg/l)	u	5.0	3.4
Water Soluble Ammonium Ion	(mg/l)	u	< 1.0	< 1.0

L23/04156/PSL - 23-36144

Project Reference - PSL23/6014 M1 J23A-J25

Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
308325	-	BH1851S	-	-	Dark brown gravelly silty clay	9.1	33	57
308326	-	BH1937N	-	_	Mottled grey red gravelly silty clay	8.7	59	52

L23/04156/PSL - 23-36144

Project Reference - PSL23/6014 M1 J23A-J25

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
308325	-	BH1851S	-	-	
308326	-	BH1937N	-	-	

L23/04156/PSL - 23-36144

Project Reference - PSL23/6014 M1 J23A-J25

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation		-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

Leicester LE1 4DH

L23/04156/PSL - 23-36144

Project Reference - PSL23/6014 M1 J23A-J25

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number Test	Deviations
308325	-	BH1851S	-	-	A
308326	-	BH1937N	-	-	A

LABORATORY REPORT

Contract Number: PSL23/6015

Report Date: 01 August 2023

Client's Reference: G230600

Client Name: Strata Geotechnics

Kirkby Lane Pinxton

Nottinghamshire NG16 6JA

For the attention of: Jade Baxter

Contract Title: M1 J23a-J25

 Date Received:
 21/7/2023

 Date Commenced:
 21/7/2023

 Date Completed:
 1/8/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman (Director) (Quality Manager)

S Royle (Laboratory Manager)

L Knight S Eyre T Watkins (Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5-7 Hexthorpe Road,

Hexthorpe, Doncaster,

DN4 0AR

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1877S	2	D	1.50	1.60	Reddish brown gravelly sandy CLAY.
BH1877S	4	D	2.50	2.60	Reddish brown gravelly sandy CLAY.
BH1896S	2	D	1.20	1.30	Brown gravelly very sandy CLAY.
BH1896S	3	D	1.30	1.40	Reddish brown very gravelly sandy CLAY.
BH1896S	5	D	1.90	2.00	Brown sandy silty GRAVEL.
BH1896S	6	D	4.00	4.20	Brown gravelly slightly silty SAND.
BH1896S	8	D	4.30	4.40	Brown slightly silty SAND.
BH1896S	10	В	4.60	5.00	Brown slightly gravelly slightly silty SAND.
BH1912S	6	D	1.00	2.00	Brown gravelly sandy CLAY.
BH1912S	2	D	2.00	2.45	Reddish brown gravelly sandy CLAY.
BH1912S	11	D	3.00	4.00	Reddish brown gravelly sandy CLAY.
BH1912S	13	D	4.00	5.00	Reddish brown slightly gravelly sandy CLAY.
	·				

M1 J23a-J25

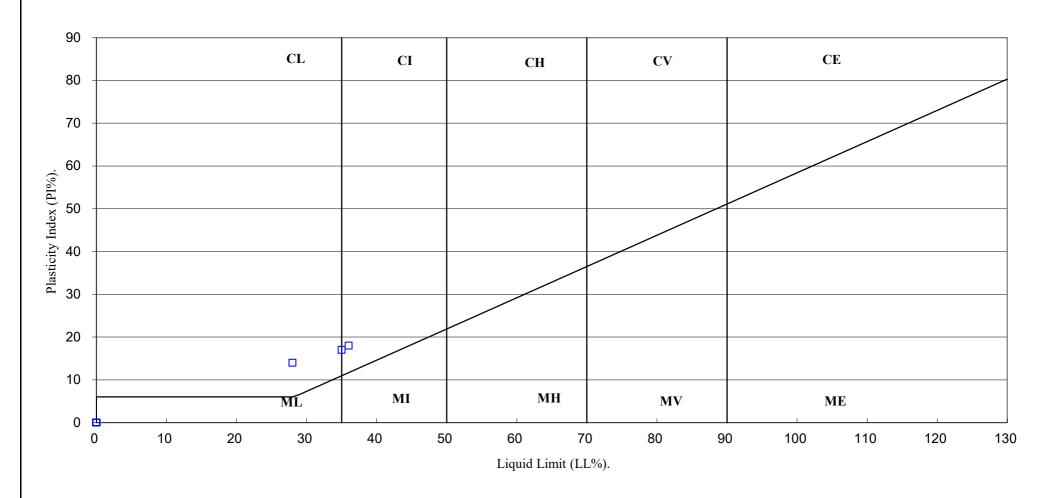
Contract No:
PSL23/6015
Client Ref:
G230600

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1877S	2	D	1.50	1.60	14			35	18	17	80	Intermediate Plasticity CI
BH1877S	4	D	2.50	2.60	15			36	18	18	78	Intermediate Plasticity CI
BH1896S	2	D	1.20	1.30	14			28	14	14	77	Low Plasticity CL
BH1896S	5	D	1.90	2.00	4.5				NP			
BH1912S	6	D	1.00	2.00	21							

SYMBOLS: NP: Non Plastic



M1 J23a-J25

Contract No:
PSL23/6015
Client Ref:
G230600

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

M1 J23a-J25

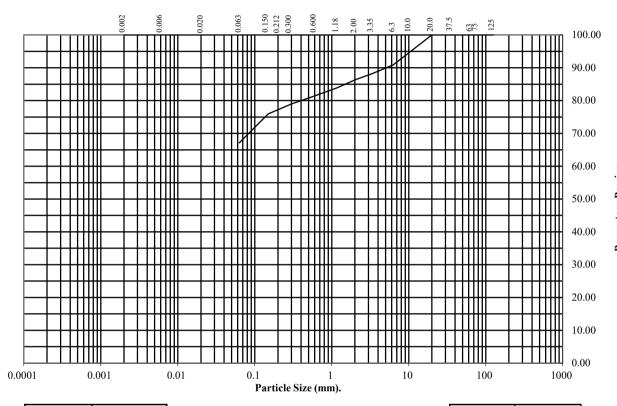
Contract No:
PSL23/6015
Client Ref:
G230600

SUMMARY OF SOIL DENSITY RELATED TESTS

(BS1377: PART 2 & 4:1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content %	Bulk Density Mg/m ³	Dry Density Mg/m ³	Retained 20mm	Retained 37.5mm %	Method of compaction kg	Maximum Dry Density Mg/m ³	Minimum Dry Density Mg/m ³	Remarks
BH1877S	2	D	1.50	1.60	14	2.16	1.89				_		
BH1877S	4	D	2.50	2.60	15	2.14	1.86						
BH1896S	2	D	1.20	1.30	14	2.10	1.84						
BH1896S	5	D	1.90	2.00	4.5	2.06	1.97						
BH1912S	6	D	1.00	2.00	21	2.05	1.69						
BH1912S	11	D	3.00	4.00	24	2.00	1.61						

M1 J23a-J25


Contract No:
PSL23/6015
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877S Top Depth (m): 1.50

Sample Number: 2 Base Depth(m): 1.60

Sample Type: D

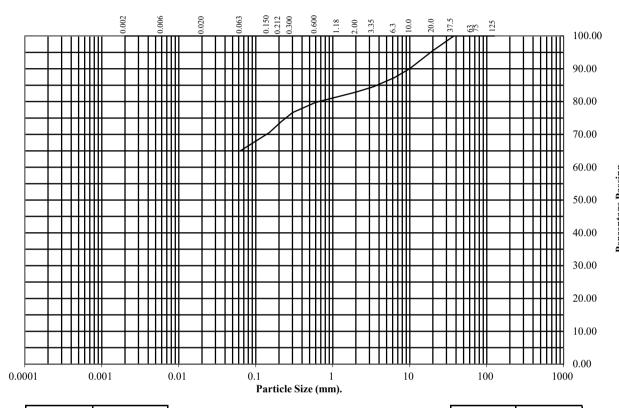
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	95
6.3	91
3.35	88
2	86
1.18	84
0.6	81
0.3	79
0.212	77
0.15	76
0.063	67

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 14 19 67

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877S Top Depth (m): 2.50

Sample Number: 4 Base Depth(m): 2.60

Sample Type: D

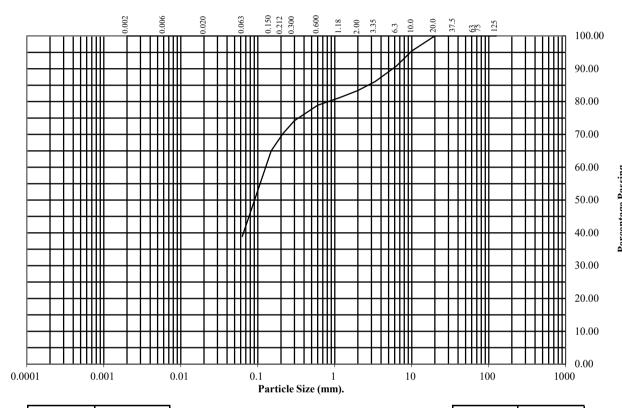
BS Test	Percentage			
Sieve (mm)	Passing			
125	100			
75	100			
63	100			
37.5	100			
20	96			
10	90			
6.3	87			
3.35	85			
2	83			
1.18	82			
0.6	80			
0.3	77			
0.212	74			
0.15	71			
0.063	65			

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 17 18 65

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1896S Top Depth (m): 1.20

Sample Number: 2 Base Depth(m): 1.30

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	95
6.3	91
3.35	86
2	83
1.18	81
0.6	79
0.3	74
0.212	70
0.15	65
0.063	39

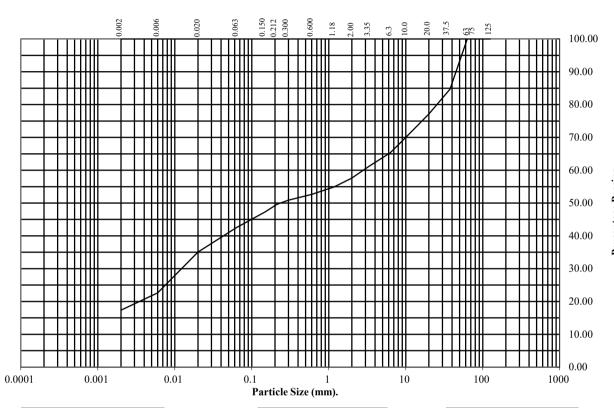
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 17 44 39

J	K	e	m	a	r	ks	,

See Summary of Soil Descriptions

M1 J23a-J25

Contract No:
PSL23/6015
Client Ref:
G230600


BS1377: Part 2: 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Hole Number: BH1896S Top Depth (m): 1.30

Sample Number: 3 Base Depth(m): 1.40

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	85
20	77
10	70
6.3	65
3.35	61
2	58
1.18	55
0.6	53
0.3	51
0.212	50
0.15	47
0.063	42

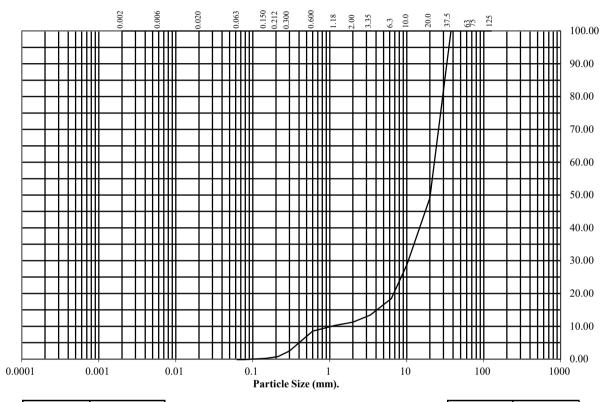
Particle Diameter	Percentage Passing
0.02	35
0.006	23
0.002	17

Soil	Total
Fraction	Percentage
Cobbles	0
Gravel	42
Sand	16
Silt	25
Clay	17

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1896S Top Depth (m): 1.90

Sample Number: 5 Base Depth(m): 2.00

Sample Type: D

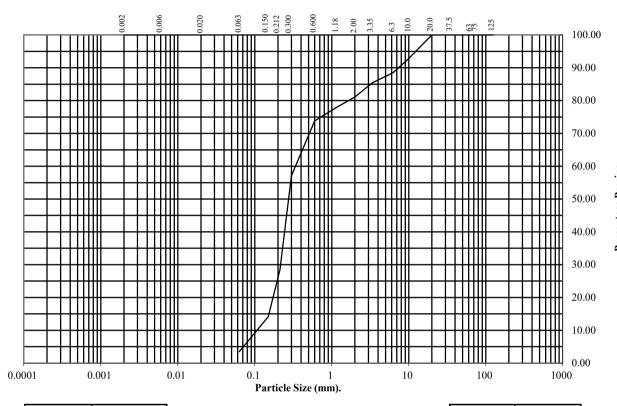
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	49
10	29
6.3	18
3.35	13
2	11
1.18	10
0.6	9
0.3	2
0.212	1
0.15	0
0.063	0

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 89 11 0

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1896S Top Depth (m): 4.00

Sample Number: 6 Base Depth(m): 4.20

Sample Type: D

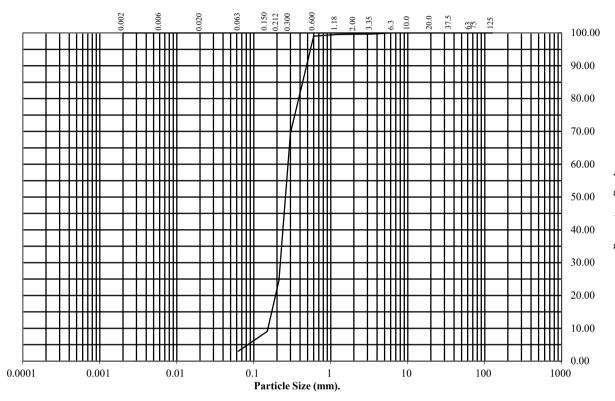
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	93
6.3	89
3.35	85
2	81
1.18	78
0.6	74
0.3	57
0.212	28
0.15	14
0.063	4

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 19 77 4

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1896S Top Depth (m): 4.30

Sample Number: 8 Base Depth(m): 4.40

Sample Type: D

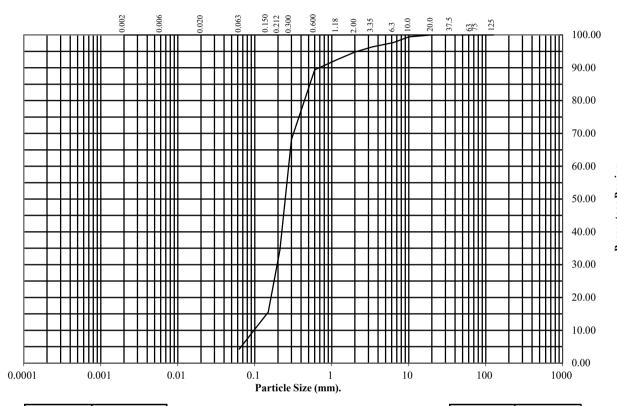
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	100
2	100
1.18	100
0.6	99
0.3	70
0.212	25
0.15	9
0.063	3

Soil	Total			
Fraction	Percentage			
Cobbles Gravel Sand Silt/Clay	0 0 97 3			

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1896S Top Depth (m): 4.60

Sample Number: 10 Base Depth(m): 5.00

Sample Type: B

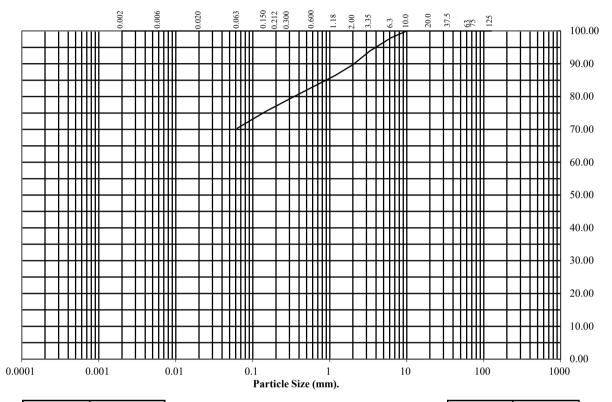
BS Test	Percentage			
Sieve (mm)	Passing			
125	100			
75	100			
63	100			
37.5	100			
20	100			
10	99			
6.3	98			
3.35	96			
2	95			
1.18	92			
0.6	89			
0.3	68			
0.212	35			
0.15	16			
0.063	4			

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 5 91 4		

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1912S Top Depth (m): 1.00

Sample Number: 6 Base Depth(m): 2.00

Sample Type: D

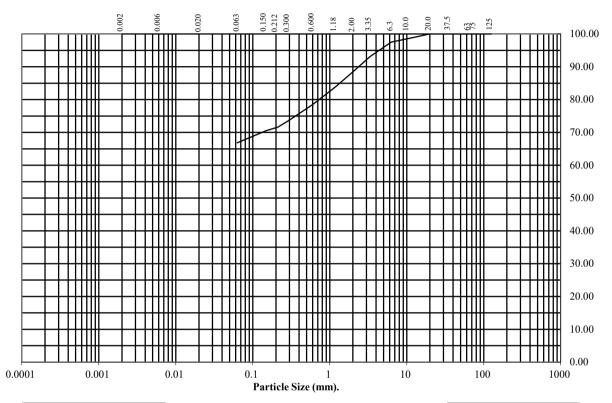
BS Test	Percentage			
Sieve (mm)	Passing			
125	100			
75	100			
63	100			
37.5	100			
20	100			
10	100			
6.3	98			
3.35	94			
2	90			
1.18	86			
0.6	83			
0.3	79			
0.212	77			
0.15	76			
0.063	70			

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 10 20 70		

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1912S Top Depth (m): 2.00

Sample Number: 2 Base Depth(m): 2.45

Sample Type: D

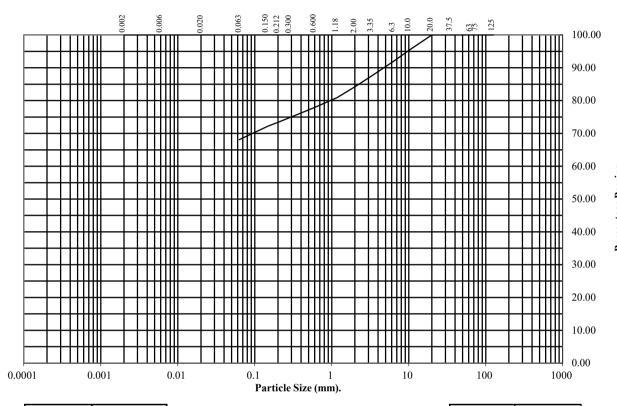
BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	98		
6.3	98		
3.35	93		
2	88		
1.18	84		
0.6	79		
0.3	74		
0.212	72		
0.15	71		
0.063	67		

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 12 21 67		

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1912S Top Depth (m): 3.00

Sample Number: 11 Base Depth(m): 4.00

Sample Type: D

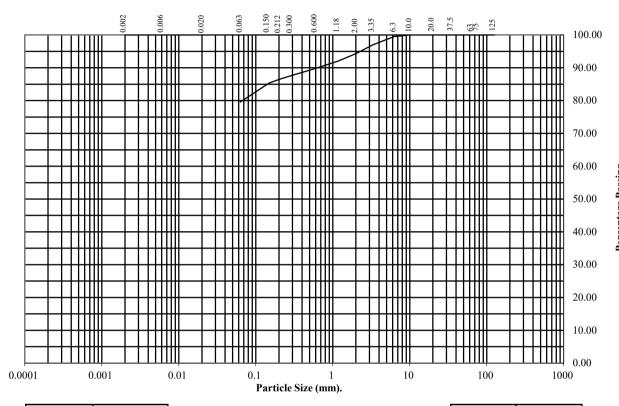
BS Test	Percentage			
Sieve (mm)	Passing			
125	100			
75	100			
63	100			
37.5	100			
20	100			
10	95			
6.3	92			
3.35	88			
2	84			
1.18	81			
0.6	78			
0.3	75			
0.212	74			
0.15	72			
0.063	68			

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 16 16 68		

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6015 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1912S Top Depth (m): 4.00

Sample Number: 13 Base Depth(m): 5.00

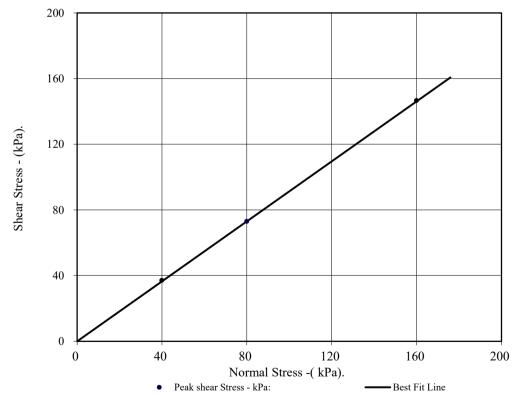
Sample Type: D

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	100		
6.3	100		
3.35	97		
2	94		
1.18	92		
0.6	90		
0.3	88		
0.212	87		
0.15	85		
0.063	80		

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 6 14 80		

Remarks:

See Summary of Soil Descriptions


M1 J23a-J25

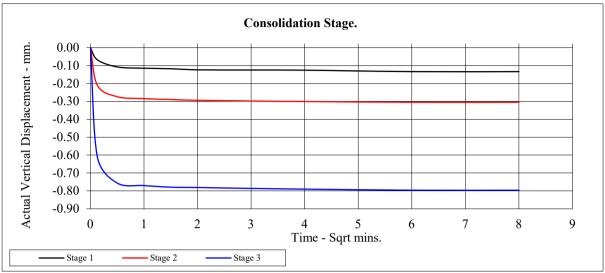
Contract No: PSL23/6015 Client Ref: G230600

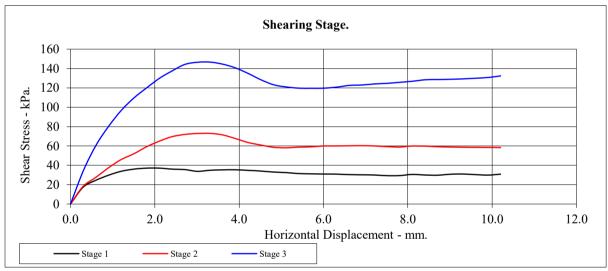
CONSOLIDATED DRAINED SHEARBOX TEST

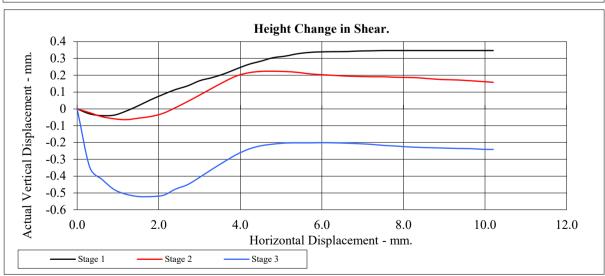
BS1377:Part 7:1990 Clause 4

Hole Number:	BH1896S Top 1		Top Depth	Top Depth:		4.00	
Sample Number:	6 Base Depth		1: 4.20		20		
Sample Conditions:		Dry			I	D	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:				
Sample Preparation:	Material test	ed passing 2mm sieve					
		using hand tamped effo					
Sample Description:	See summa	ry of soil descriptions.					
STAGE				1	2	3	
		Initial Conditions	S				
Height - mm:				20.01	20.01	20.01	
Length - mm:				60.05	60.05	60.05	
Moisture Content - %:				14	14	14	
Bulk Density - Mg/m3:				2.12	2.12	2.12	
Dry Density - Mg/m3:				1.86	1.86	1.86	
Voids Ratio:				0.426	0.426	0.426	
Normal Pressure- kPa				40	80	160	
		Consolidation Stag	ge				
Consolidated Height - mm:				19.88	19.71	19.21	
		Shearing Stage					
Rate of Strain - mm/min				0.60	0.60	0.60	
Displacement at peak shear	stress - mm			1.81	3.31	3.32	
Peak shear Stress - kPa:				37	73	147	
	Fi	nal Consolidated Con	ditions				
Moisture Content - %:				14	13	13	
Bulk Density - Mg/m3:				2.14	2.15	2.21	
Dry Density - Mg/m3:				1.87	1.90	1.95	
		Peak					
Angle of Shearing Resistance	e:(0)				42		
Effective Cohesion - kPa:					0		

M1 J23a-J25


Contract No:
PSL23/6015
Client Ref:
G230600


PSLRF058 Approved by: L Pavey Date: 03/01/2023 Issue No.1


CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1896S	Top Depth:	4.00	
Sample Number:	6	Base Depth:	4.20	

M1 J23a-J25

Contract No: PSL23/6015 Client Ref: G230600

PSLRF058 Approved by: L Pavey Date: 03/01/2023 Issue No.1

Professional Soils Laboratory 5/7 Hexthorpe Road@ Hexthorpe@ Doncaster@ DN4 OAR

Analytical Test Report: L23/03924/PSL - 23-35884

Your Project Reference: PSL23/6015 M1 J23a-J25

Your Order Number: PSL Samples Received / Instructed: 28/07/2023 / 28/07/2023

Report Issue Number: 1 Sample Tested: 28/07 to 03/08/2023

Samples Analysed: 3 soil samples Report issued: 03/08/2023

James Gane

Analytical Services Manager

CTS Group

Notes:

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

Moisture Content was determined in accordance with CTS method statement MS - CL - Sample Prep, oven dried at <30°C.

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Ke

UKAS = UKAS Accreditation, MCERTS = MCERTS Accreditation, u = Unaccredited

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 26.07.2

Issued by: J. Gane Issue No: 4

nasue no.

L23/03924/PSL - 23-35884

Project Reference - PSL23/6015 M1 J23a-J25

Analytical Test Results - Chemical Analysis

Lab Reference			307132	307133	307134
Client Sample ID			-	-	-
Client Sample Location			BH1877S	BH1896S	BH1912S
Client Sample Type			D	D	D
Client Sample Number			2	2	6
Depth - Top (m)			1.50	1.20	1.00
Depth - Bottom (m)			1.60	1.30	2.00
Date of Sampling			-	-	-
Time of Sampling			-	-	-
Sample Matrix			Clay	Clay	Clay
Determinant	Units	Accreditation			
Water soluble sulphate (as SO ₄)	(mg/l)	u	31	30	-
Acid Soluble Sulphate	(%)	u	0.04	0.03	-
Total Sulphur	(%)	UKAS	0.02	0.02	-
pH Value	pH Units	MCERTS	8.8	9.7	-
Loss on Ignition (BS 1377)	(%)	UKAS	-	-	3.4

L23/03924/PSL - 23-35884

Project Reference - PSL23/6015 M1 J23a-J25

Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
307132	-	BH1877S	D	2	Brown slightly sandy silty clay	-	-	69
307133	-	BH1896S	D	2	Mottled grey brown gravelly very sandy silty clay	-	-	64
307134	-	BH1912S	D	6	Brown slightly sandy silty clay		-	40

L23/03924/PSL - 23-35884

Project Reference - PSL23/6015 M1 J23a-J25

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
307132	-	BH1877S	D	2	
307133	-	BH1896S	D	2	
307134	-	BH1912S	D	6	

L23/03924/PSL - 23-35884

Project Reference - PSL23/6015 M1 J23a-J25

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377LOI	BS1377 LoI	Oven dried	Passing 2mm test sieve	Testing was in accordance with BS 1377: Part 3: 2018 + A1: 2021 Clause 6. Determination of the mass loss on ignition. Some information required by BS1377: 2016: Part 1 has not been reported. This information is available on request.
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

L23/03924/PSL - 23-35884

Project Reference - PSL23/6015 M1 J23a-J25

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number Test	Deviations
307132	-	BH1877S	D	2	A
307133	-	BH1896S	D	2	A
307134	-	BH1912S	D	6	A

LABORATORY REPORT

Contract Number: PSL23/6016

Report Date: 01 August 2023

Client's Reference: G230600

Client Name: Strata Geotechnics

Kirkby Lane Pinxton

Nottinghamshire NG16 6JA

For the attention of: Jade Baxter

Contract Title: M1 J23a-J25

Date Received: 21/7/2023 Date Commenced: 21/7/2023 Date Completed: 1/8/2023

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman (Director) (Quality Manager)

(Laboratory Manager)

L Knight S Eyre T Watkins
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5-7 Hexthorpe Road,

Hexthorpe, Doncaster,

DN4 0AR

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1877N	13	D	0.50		Brown slightly sandy GRAVEL.
BH1877N	2	D	1.20	1.65	Brown slightly gravelly very sandy CLAY.
BH1877N	16	D	2.00	3.00	Brown very sandy slightly clayey GRAVEL.
BH1877N	4	D	3.00	3.41	Brown very sandy slightly clayey GRAVEL.
BH1877N	20	D	4.00	4.20	Brown very sandy very clayey GRAVEL.
BH1877N	21	D	4.50	4.70	Brown gravelly sandy CLAY.
BH1877N	22	D	4.70	5.00	Brown very gravelly slightly silty SAND.
BH1877N	6	D	5.00	5.45	Brown very gravelly slightly silty SAND.
BH1877N	7	D	6.00	6.45	Brown sandy slightly silty GRAVEL.
BH1877N	25	В	7.00	8.00	Brown very sandy slightly silty GRAVEL.
BH1877N	26	D	8.00	9.00	Brown very gravelly slightly silty SAND.
BH1902N	12	В	1.20	1.30	Reddish brown slightly clayey SAND & GRAVEL.
BH1902N	16	D	2.90	3.00	Reddish brown gravelly sandy CLAY.
BH1902N	17	D	3.60	3.70	Reddish brown gravelly sandy CLAY.
BH1902N	18	D	4.50	4.70	Reddish brown gravelly sandy CLAY.
BH1902N	7	D	6.00	6.45	Reddish brown gravelly sandy CLAY.
BH1902N	19	D	6.50	6.70	Reddish brown gravelly sandy CLAY.
BH1902N	20	D	7.50	7.70	Reddish brown gravelly sandy CLAY.
BH1902N	9	D	8.00	8.45	Reddish brown gravelly sandy CLAY.

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

PSLRF011 Issue No.1 Approved by: L Pavey 03/01/2022

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1902N	10	D	9.00	9.45	Reddish brown gravelly sandy CLAY.
BH1902N	22	D	9.50	9.70	Reddish brown gravelly sandy CLAY.
BH1933S	12	В	1.20	1.30	Reddish brown sandy very clayey GRAVEL.
BH1933S	15	D	1.20	1.30	Reddish brown sandy very clayey GRAVEL.
BH1933S	17	D	1.90	2.00	Reddish brown very gravelly sandy CLAY.
BH1933S	18	D	2.80	2.90	Reddish brown gravelly sandy CLAY.
BH1933S	4	D	3.20	3.65	Reddish brown gravelly sandy CLAY.
BH1933S	21	D	4.10	4.20	Reddish brown gravelly sandy CLAY.
BH1933S	5	D	4.20	4.65	Reddish brown gravelly sandy CLAY.
BH1933S	23	D	5.10	0.20	Reddish brown gravelly sandy CLAY.
BH1933S	24	CSS	6.00	6.10	Reddish brown gravelly sandy CLAY.
BH1933S	7	D	6.20	6.65	Reddish brown gravelly sandy CLAY.
BH1933S	27	D	7.10	7.20	Reddish brown gravelly sandy CLAY.
BH1933S	9	D	8.20	8.65	Grey gravelly very sandy CLAY.
BH1933S	10	D	9.20	9.65	Reddish brown gravelly sandy CLAY.

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

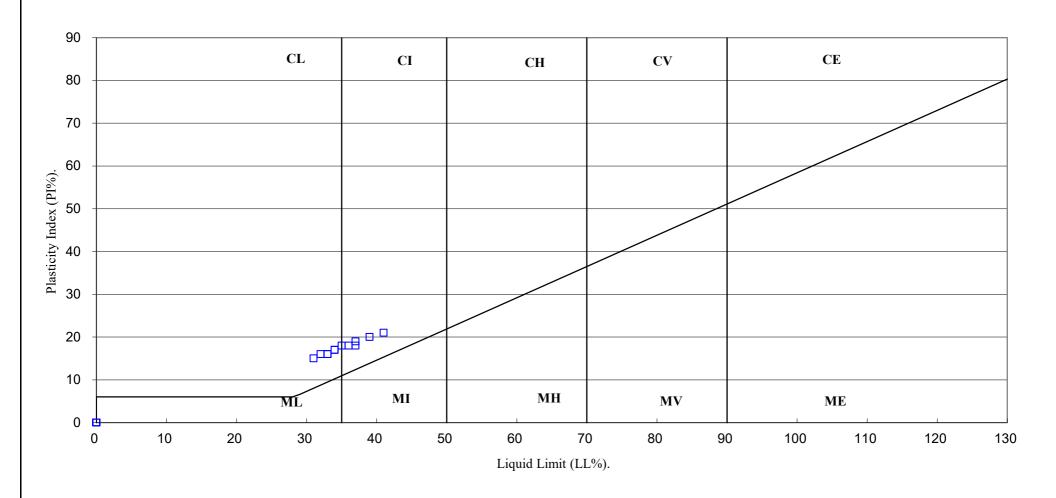
PSLRF011 Issue No.1 Approved by: L Pavey 03/01/2022

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1877N	13	D	0.50		2.7				NP			
BH1877N	2	D	1.20	1.65	15			32	16	16	83	Low Plasticity CL
BH1877N	4	D	3.00	3.41	5.2				NP			
BH1877N	20	D	4.00	4.20	11			34	17	17	36	Low Plasticity CL
BH1877N	22	D	4.70	5.00	8.2				NP			
BH1877N	6	D	5.00	5.45	9.4				NP			
BH1877N	25	В	7.00	8.00	7.4				NP			
BH1877N	26	D	8.00	9.00	12				NP			
BH1902N	12	В	1.20	1.30	11				NP			
BH1902N	16	D	2.90	3.00	13			37	18	19	76	Intermediate Plasticity CI
BH1902N	17	D	3.60	3.70	14			34	17	17	84	Low Plasticity CL
BH1902N	18	D	4.50	4.70	18			35	17	18	79	Intermediate Plasticity CI
BH1902N	7	D	6.00	6.45	17			37	19	18	82	Intermediate Plasticity CI
BH1902N	20	D	7.50	7.70	21			36	18	18	86	Intermediate Plasticity CI
BH1902N	9	D	8.00	8.45	19			41	20	21	76	Intermediate Plasticity CI
BH1902N	10	D	9.00	9.45	11			39	19	20	80	Intermediate Plasticity CI
BH1933S	12	В	1.20	1.30	13			33	17	16	31	Low Plasticity CL
BH1933S	15	D	1.20	1.30	11			31	16	15	50	Low Plasticity CL
BH1933S	17	D	1.90	2.00	11			33	17	16	41	Low Plasticity CL

SYMBOLS: NP: Non Plastic


M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

PSLRF006 Issue No.1 Approved By: L Pavey 03/01/2023

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

PSLRF006

Issue No.1

Approved By: L Pavey

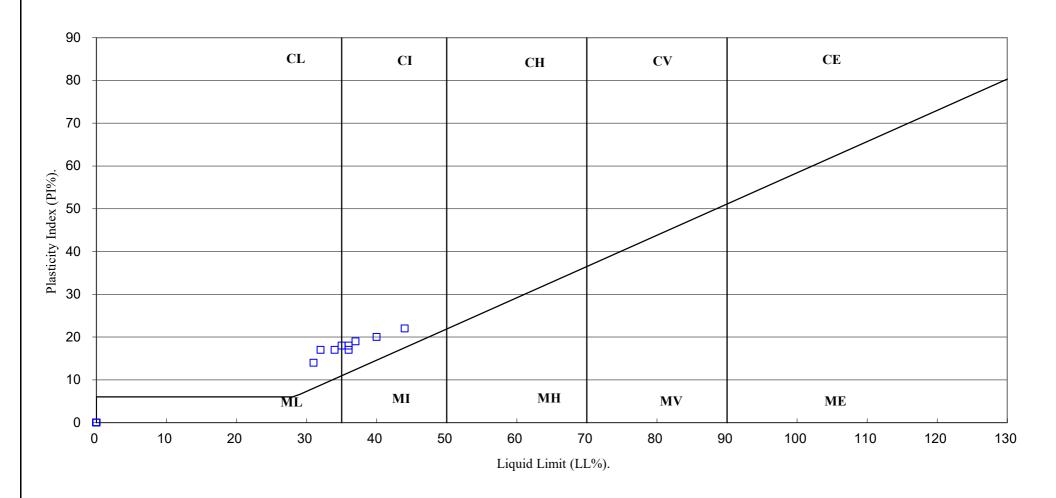
03/01/2023

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

			_		Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Top	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1933S	18	D	2.80	2.90	24			44	22	22	81	Intermediate Plasticity CI
BH1933S	4	D	3.20	3.65	14			37	18	19	80	Intermediate Plasticity CI
BH1933S	5	D	4.20	4.65	14			35	17	18	85	Intermediate Plasticity CI
BH1933S	23	D	5.10	5.20	14			31	17	14	83	Low Plasticity CL
BH1933S	24	CSS	6.00	6.10	20			36	18	18	87	Intermediate Plasticity CI
BH1933S	7	D	6.20	6.65	12			34	17	17	71	Low Plasticity CL
BH1933S	27	D	7.10	7.20	15			40	20	20	85	Intermediate Plasticity CI
BH1933S	9	D	8.20	8.65	16			36	19	17	62	Intermediate Plasticity CI
BH1933S	10	D	9.20	9.65	11			32	15	17	69	Low Plasticity CL

SYMBOLS: NP: Non Plastic


M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

PSLRF006 Issue No.1 Approved By: L Pavey 03/01/2023

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600

PSLRF006 Issue No.1 Approved By: L Pavey 03/01/2023

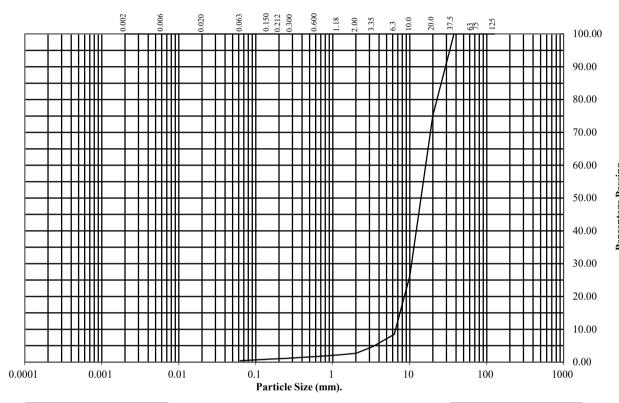
SUMMARY OF SOIL DENSITY RELATED TESTS

(BS1377: PART 2 & 4:1990)

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Moisture Content	Bulk Density Mg/m ³	Dry Density Mg/m ³	Retained 20mm	Retained 37.5mm	Method of compaction kg	Maximum Dry Density Mg/m ³	Minimum Dry Density Mg/m³	Remarks
BH1877N	13	D	0.50		2.7	2.17	2.11						
BH1877N	2	D	1.20	1.65	15	2.15	1.87						
BH1877N	20	D	4.00	4.20	11	2.19	1.97						
BH1877N	6	D	5.00	5.45	9.4	2.14	1.96						
BH1902N	16	D	2.90	3.00	13	2.16	1.91						
BH1902N	18	D	4.50	4.70	18	2.10	1.78						
BH1902N	9	D	8.00	8.45	19	2.07	1.74						
BH1933S	12	В	1.20	1.30	13	2.19	1.94						
BH1933S	15	D	1.20	1.30	11	2.21	1.99						
BH1933S	18	D	2.80	2.90	24	2.00	1.61						
BH1933S	7	D	6.20	6.65	12	2.17	1.94						
BH1933S	9	D	8.20	8.65	16	2.12	1.83						
BH1933S	10	D	9.20	9.65	11	2.15	1.94						

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600


PSLRF010 Issue No. 1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 0.50

Sample Number: 13 Base Depth(m):

Sample Type: D

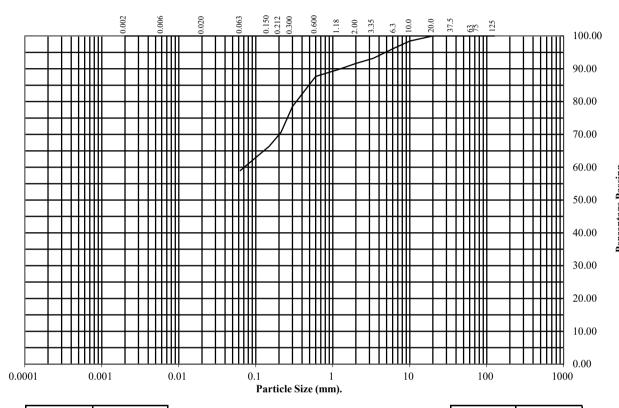
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	75
10	26
6.3	8
3.35	5
2	3
1.18	2
0.6	2
0.3	1
0.212	1
0.15	1
0.063	0

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 97 3 0

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 1.20

Sample Number: 2 Base Depth(m): 1.65

Sample Type: D

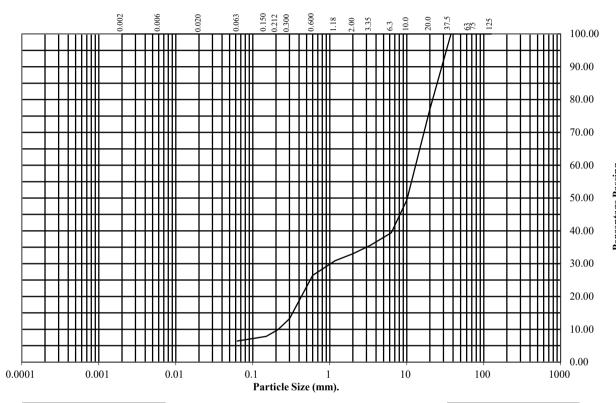
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	98
6.3	96
3.35	93
2	92
1.18	90
0.6	88
0.3	78
0.212	71
0.15	66
0.063	59

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 8 33 59

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 2.00

Sample Number: 16 Base Depth(m): 3.00

Sample Type: D

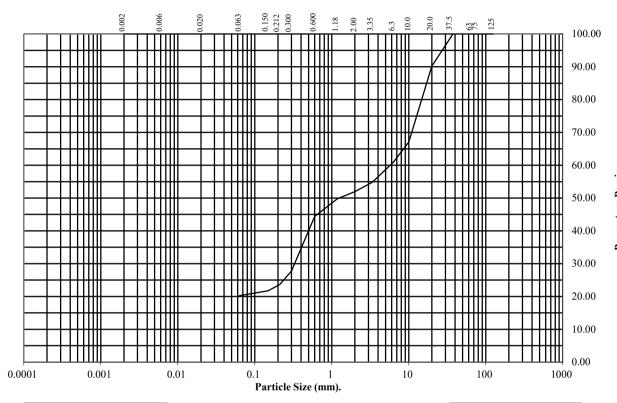
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	77
10	49
6.3	39
3.35	36
2	33
1.18	31
0.6	26
0.3	13
0.212	10
0.15	8
0.063	6

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 67 27 6

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 4.00

Sample Number: 20 Base Depth(m): 4.20

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	90
10	67
6.3	61
3.35	55
2	52
1.18	50
0.6	44
0.3	28
0.212	24
0.15	22
0.063	20

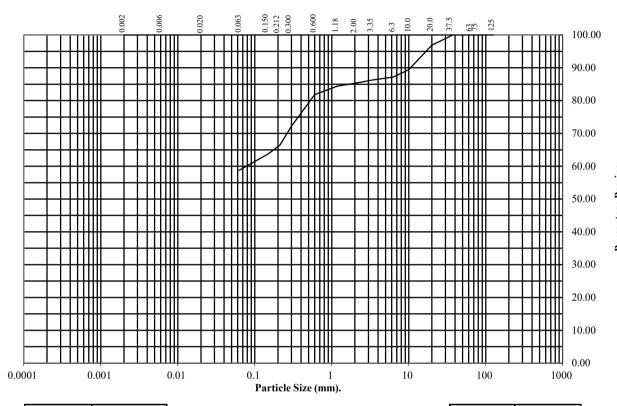
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 48 32 20

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6016 Client Ref: G230600


PSLRF015 Issue No.1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 4.50

Sample Number: 21 Base Depth(m): 4.70

Sample Type: D

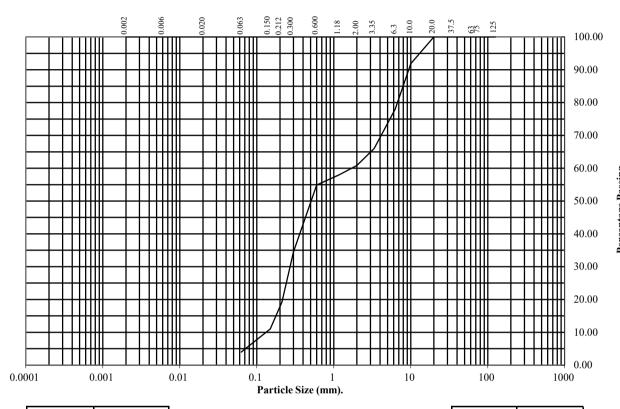
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	97
10	89
6.3	87
3.35	86
2	85
1.18	84
0.6	82
0.3	72
0.212	66
0.15	64
0.063	59

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 15 26 59

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 5.00

Sample Number: 6 Base Depth(m): 5.45

Sample Type: D

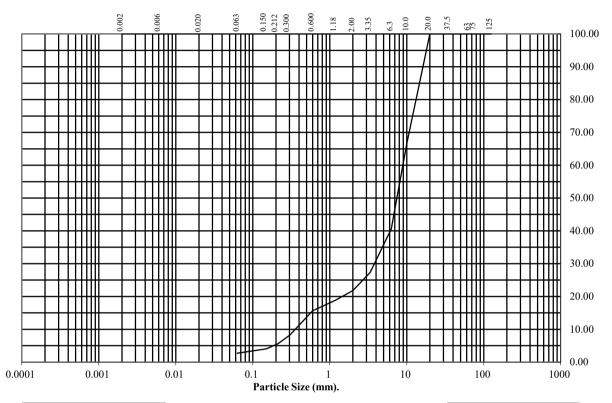
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	92
6.3	78
3.35	66
2	61
1.18	58
0.6	55
0.3	34
0.212	19
0.15	11
0.063	4

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 39 57 4

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 6.00

Sample Number: 7 Base Depth(m): 6.45

Sample Type: D

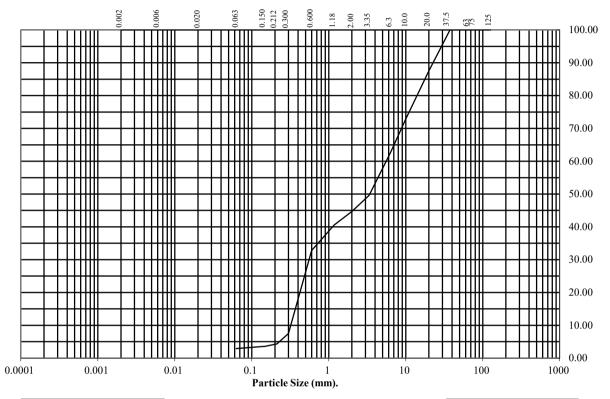
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	67
6.3	41
3.35	27
2	22
1.18	19
0.6	16
0.3	8
0.212	6
0.15	4
0.063	3

Total	
Percentage	
0 78 19 3	

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1877N Top Depth (m): 7.00

Sample Number: 25 Base Depth(m): 8.00

Sample Type: B

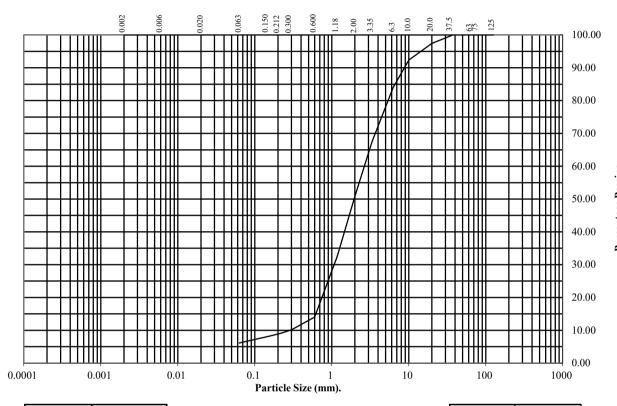
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	88
10	73
6.3	62
3.35	50
2	45
1.18	41
0.6	33
0.3	7
0.212	4
0.15	4
0.063	3

Soil	Total	
Fraction	Percentage	
Cobbles Gravel Sand Silt/Clay	0 55 42 3	

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 1.20

Sample Number: 12 Base Depth(m): 1.30

Sample Type: B

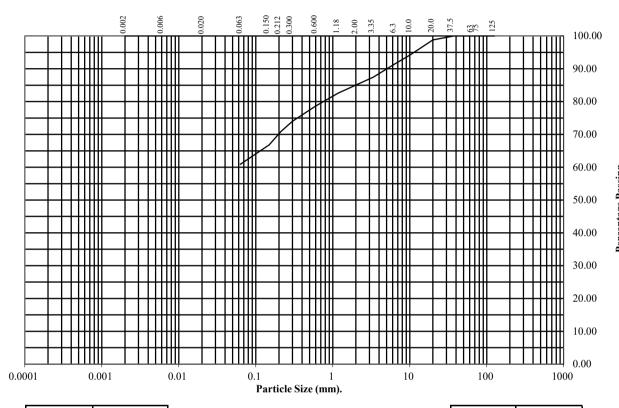
BS Test	Percentage	
Sieve (mm)	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	97	
10	92	
6.3	84	
3.35	68	
2	51	
1.18	33	
0.6	14	
0.3	10	
0.212	9	
0.15	8	
0.063	6	

Soil	Total	
Fraction	Percentage	
Cobbles Gravel Sand Silt/Clay	0 49 45 6	

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 2.90

Sample Number: 16 Base Depth(m): 3.00

Sample Type: D

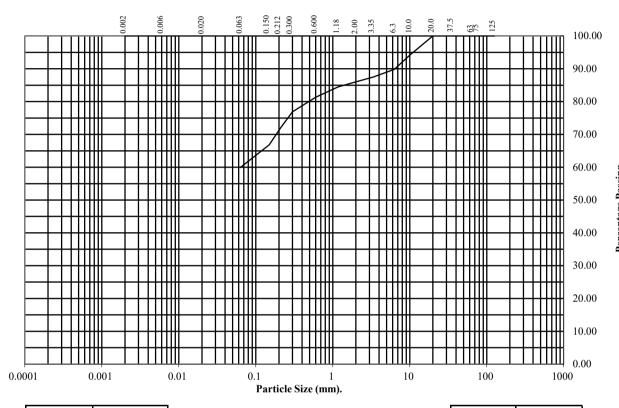
BS Test	Percentage	
Sieve (mm)	Passing	
125	100	
75	100	
63	100	
37.5	100	
20	99	
10	94	
6.3	91	
3.35	87	
2	85	
1.18	83	
0.6	79	
0.3	74	
0.212	71	
0.15	67	
0.063	61	

Soil	Total		
Fraction	Percentage		
Cobbles Gravel Sand Silt/Clay	0 15 24 61		

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 4.50

Sample Number: 18 Base Depth(m): 4.70

Sample Type: D

BS Test	Percentage		
Sieve (mm)	Passing		
125	100		
75	100		
63	100		
37.5	100		
20	100		
10	94		
6.3	90		
3.35	87		
2	86		
1.18	85		
0.6	81		
0.3	77		
0.212	72		
0.15	67		
0.063	60		

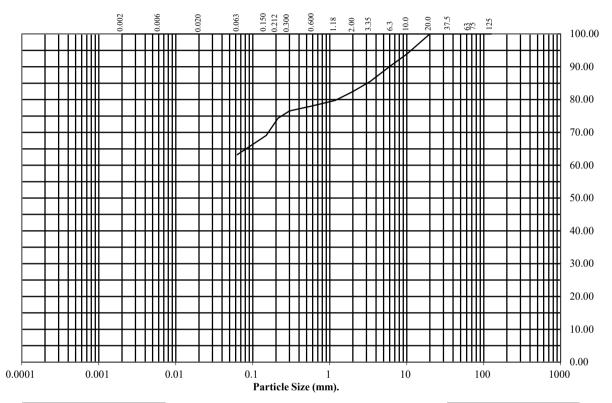
Total	
Percentage	
0 14 26 60	

К	eı	n	Я	rl	ZS	•

See Summary of Soil Descriptions

M1 J23a-J25

Contract No: PSL23/6016 Client Ref: G230600


PSLRF015 Issue No.1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 6.50

Sample Number: 19 Base Depth(m): 6.70

Sample Type: D

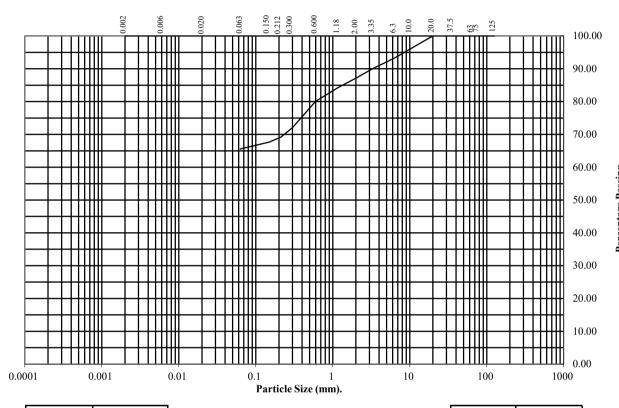
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	94
6.3	90
3.35	86
2	82
1.18	80
0.6	78
0.3	77
0.212	74
0.15	69
0.063	63

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 18 19 63

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 8.00

Sample Number: 9 Base Depth(m): 8.45

Sample Type: D

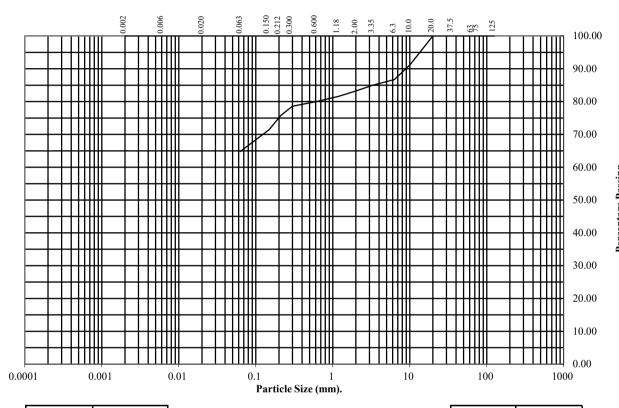
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	96
6.3	93
3.35	90
2	87
1.18	84
0.6	80
0.3	72
0.212	69
0.15	68
0.063	66

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 13 21 66

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1902N Top Depth (m): 9.50

Sample Number: 22 Base Depth(m): 9.70

Sample Type: D

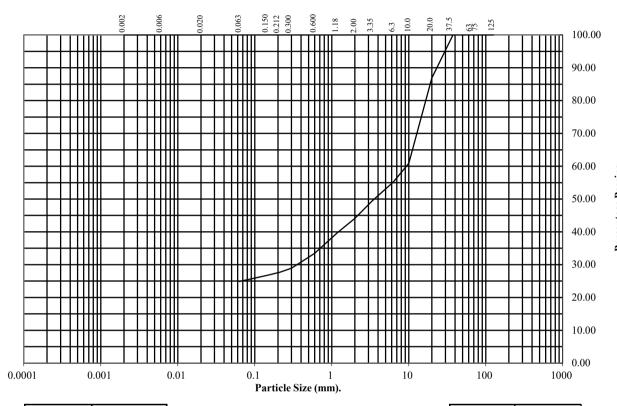
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	91
6.3	87
3.35	85
2	83
1.18	82
0.6	80
0.3	79
0.212	76
0.15	71
0.063	65

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 17 18 65

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 1.20

Sample Number: 12 Base Depth(m): 1.30

Sample Type: B

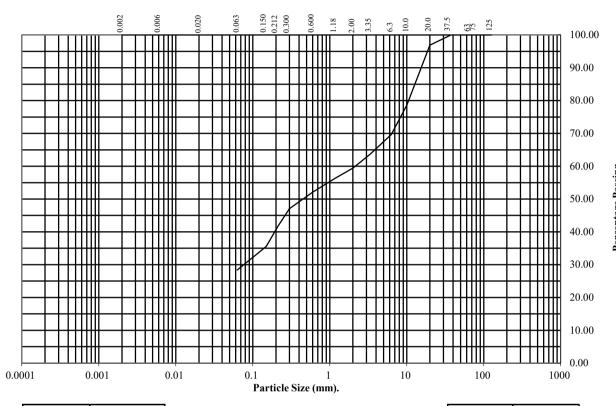
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	87
10	61
6.3	55
3.35	49
2	44
1.18	40
0.6	33
0.3	29
0.212	28
0.15	27
0.063	25

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 56 19 25

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 1.20

Sample Number: 15 Base Depth(m): 1.30

Sample Type: D

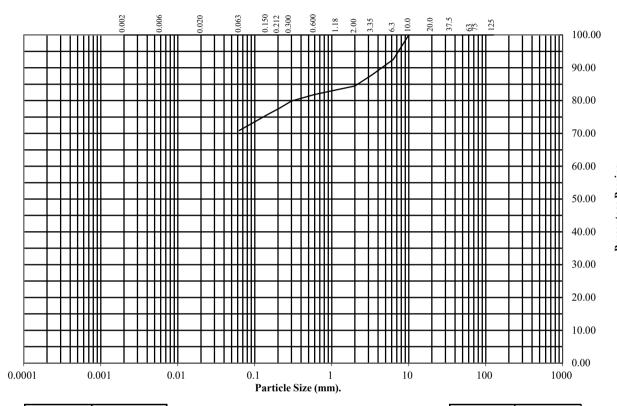
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	97
10	79
6.3	70
3.35	64
2	59
1.18	56
0.6	52
0.3	47
0.212	42
0.15	36
0.063	28

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 41 31 28

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 2.80

Sample Number: 18 Base Depth(m): 2.90

Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	93
3.35	88
2	84
1.18	83
0.6	82
0.3	80
0.212	78
0.15	76
0.063	71

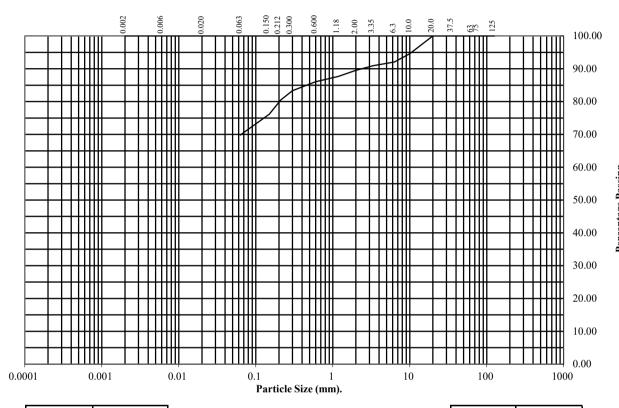
Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 16 13 71

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25

Contract No:
PSL23/6016
Client Ref:
G230600


PSLRF015 Issue No.1 Approved by: L Pavey 03/01/2023

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 4.10

Sample Number: 21 Base Depth(m): 4.20

Sample Type: D

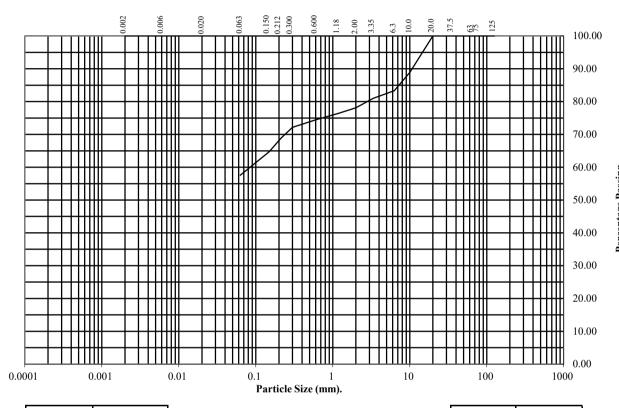
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	95
6.3	92
3.35	91
2	90
1.18	88
0.6	86
0.3	83
0.212	81
0.15	76
0.063	70

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 10 20 70

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 5.10

Sample Number: 23 Base Depth(m): 5.20

Sample Type: D

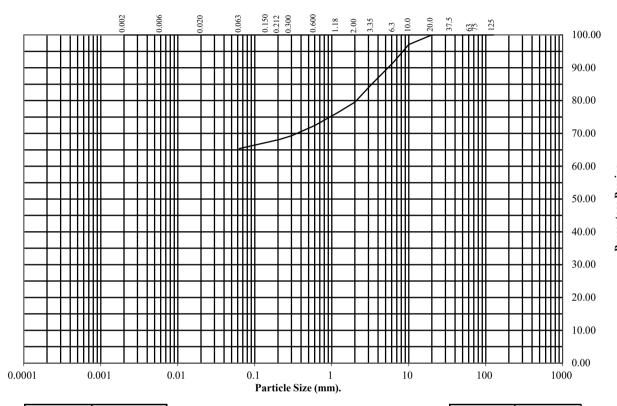
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	89
6.3	83
3.35	81
2	78
1.18	76
0.6	74
0.3	72
0.212	69
0.15	65
0.063	58

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 22 20 58

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 6.20

Sample Number: 7 Base Depth(m): 6.65

Sample Type: D

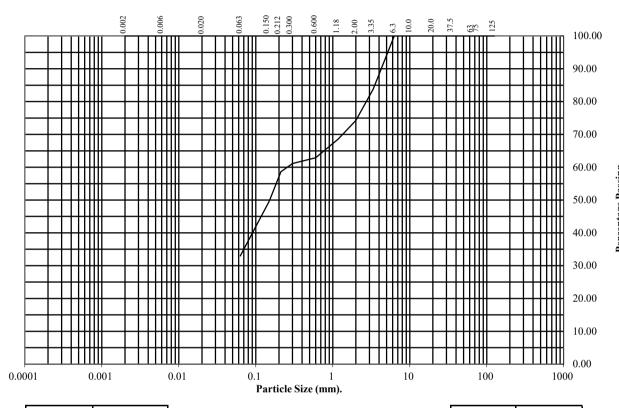
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	97
6.3	92
3.35	85
2	80
1.18	76
0.6	72
0.3	69
0.212	68
0.15	67
0.063	65

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 20 15 65

Remarks:

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 8.20

Sample Number: 9 Base Depth(m): 8.65

Sample Type: D

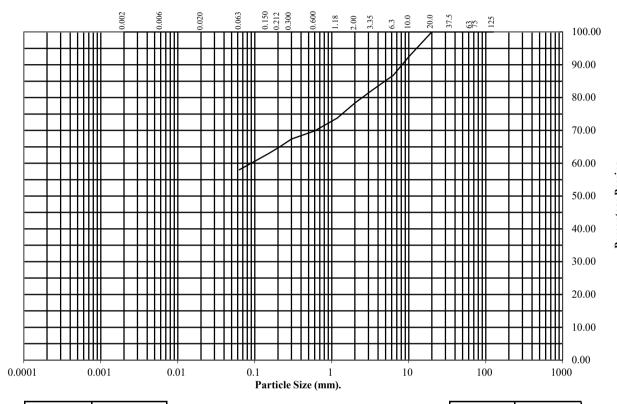
BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	100
6.3	100
3.35	84
2	74
1.18	69
0.6	63
0.3	61
0.212	59
0.15	50
0.063	33

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 26 41 33

|--|

See Summary of Soil Descriptions

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377 : Part 2 : 1990 Wet Sieve, Clause 9.2

Hole Number: BH1933S Top Depth (m): 9.20

Sample Number: 10 Base Depth(m): 9.65

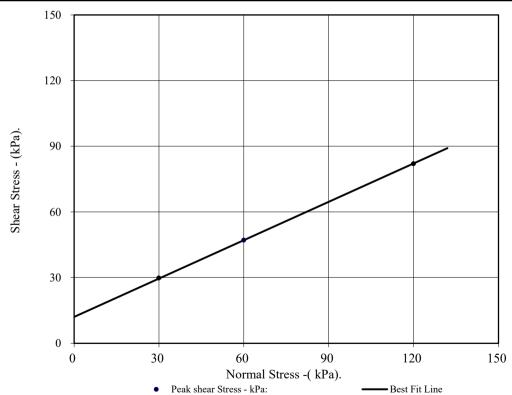
Sample Type: D

BS Test	Percentage
Sieve (mm)	Passing
125	100
75	100
63	100
37.5	100
20	100
10	92
6.3	87
3.35	82
2	78
1.18	74
0.6	70
0.3	67
0.212	65
0.15	63
0.063	58

Soil	Total
Fraction	Percentage
Cobbles Gravel Sand Silt/Clay	0 22 20 58

	<u>Re</u>	m	a	r	KS	
--	-----------	---	---	---	----	--

See Summary of Soil Descriptions


M1 J23a-J25

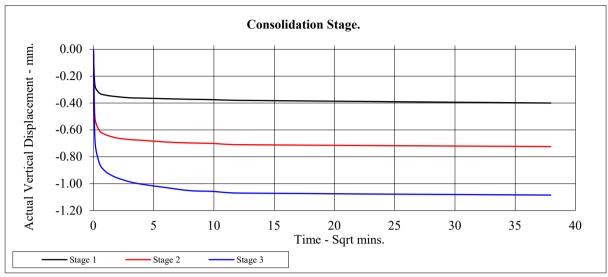
Contract No: PSL23/6016 Client Ref: G230600

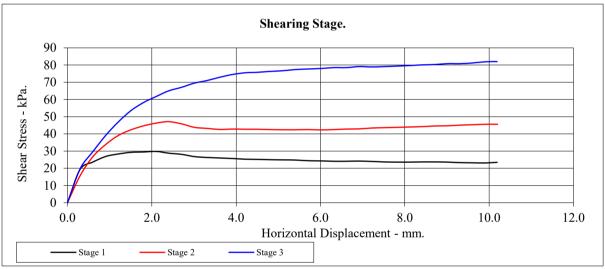
CONSOLIDATED DRAINED SHEARBOX TEST

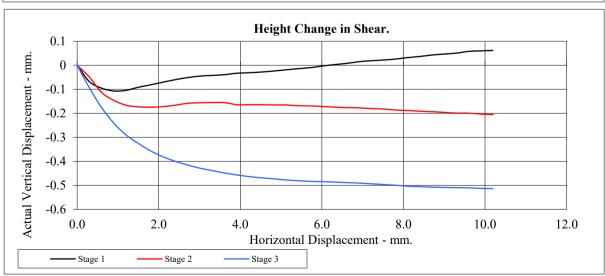
BS1377:Part 7:1990 Clause 4

Hole Number:	BH1902N		Top Depth:		2.90		
Sample Number:			Base Depth	Base Depth:		3.00	
Sample Conditions:	Submerged Sample Typ			pe D			
Particle Density - Mg/m3:	2.65	Assumed	Remarks:				
Sample Preparation:		sted passing 2mm sieve using 2.5kg effort.					
Sample Description:		ry of soil descriptions.	•				
STAGE	•			1	2	3	
		Initial Conditions			•		
Height - mm:				20.02	20.02	20.02	
Length - mm:				59.97	59.97	59.97	
Moisture Content - %:				13	13	13	
Bulk Density - Mg/m3:				2.15	2.15	2.15	
Dry Density - Mg/m3:				1.90	1.90	1.90	
Voids Ratio:				0.395	0.395	0.395	
Normal Pressure- kPa				30	60	120	
		Consolidation Stage	e				
Consolidated Height - mm:				19.62	19.30	18.94	
		Shearing Stage					
Rate of Strain - mm/min				0.061	0.061	0.061	
Displacement at peak shear	stress - mm			2.11	2.40	10.19	
Peak shear Stress - kPa:				30	47	82	
	F	inal Consolidated Cond	litions				
Moisture Content - %:				22	21	20	
Bulk Density - Mg/m3:				2.19	2.23	2.27	
Dry Density - Mg/m3:				1.80	1.84	1.89	
		Peak					
Angle of Shearing Resistance	e:(0)				30		
Effective Cohesion - kPa:					12		

M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

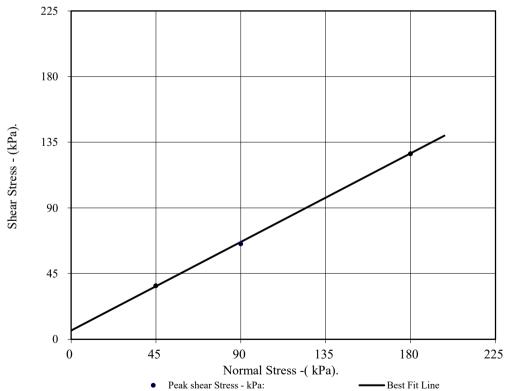

PSLRF061 Approved by: L Pavey Date: 03/01/2023 Issue No.1


CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1902N	Top Depth:	2.90
Sample Number:	16	Base Depth:	3.00

M1 J23a-J25

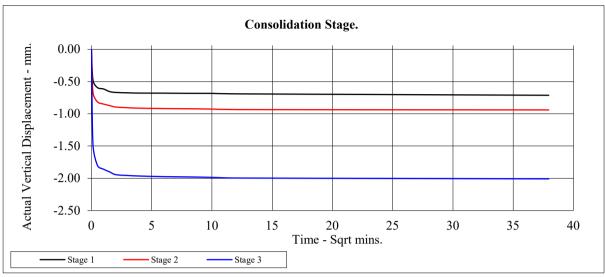

Contract No: PSL23/6016 Client Ref: G230600

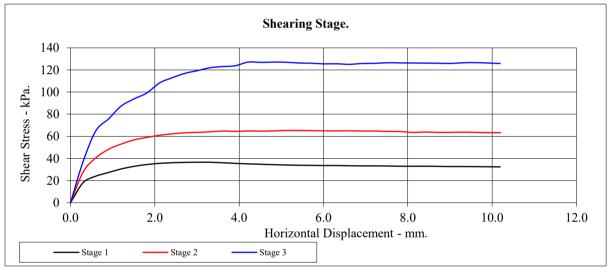
PSLRF061 Approved by: L Pavey Date: 03/01/2023 Issue No.1

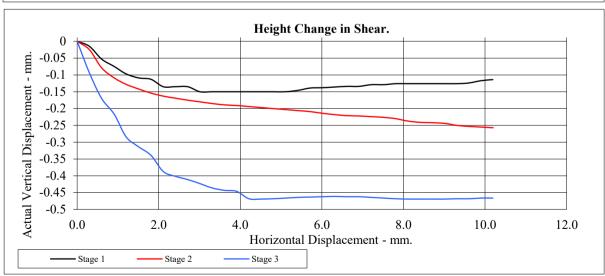
CONSOLIDATED DRAINED SHEARBOX TEST

BS1377:Part 7:1990 Clause 4

Hole Number:		BH1902N T		Top Depth:		4.50	
Sample Number:				ase Depth:		' 0	
Sample Conditions:		Submerged Sample Typ			pe D		
Particle Density - Mg/m3:	2.65	Assumed	Remarks:				
Sample Preparation:	Material tes	Material tested passing 2mm sieve					
Sample Preparation.	Remoulded	Remoulded using 2.5kg effort.					
Sample Description:	See summa	ry of soil descriptions.					
STAGE				1	2	3	
		Initial Conditions	S				
Height - mm:				20.02	20.02	20.02	
Length - mm:				59.97	59.97	59.97	
Moisture Content - %:				18	18	18	
Bulk Density - Mg/m3:				2.08	2.08	2.08	
Dry Density - Mg/m3:				1.76	1.76	1.76	
Voids Ratio:				0.506	0.506	0.506	
Normal Pressure- kPa				45	90	180	
		Consolidation Stag	ge				
Consolidated Height - mm:				19.31	19.08	18.01	
		Shearing Stage					
Rate of Strain - mm/min				0.054	0.054	0.054	
Displacement at peak shear	stress - mm			3.01	5.11	4.21	
Peak shear Stress - kPa:				37	65	127	
	F	inal Consolidated Con	ditions				
Moisture Content - %:				21	19	19	
Bulk Density - Mg/m3:				2.15	2.18	2.31	
Dry Density - Mg/m3:				1.77	1.82	1.95	
		Peak					
Angle of Shearing Resistance	e:(0)				34		
Effective Cohesion - kPa:					6		

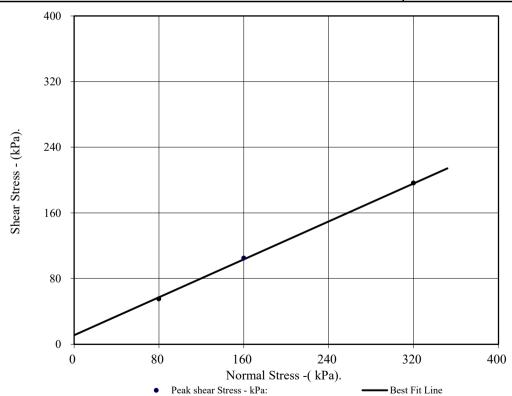

M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600


PSLRF061 Approved by: L Pavey Date: 03/01/2023 Issue No.1

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1902N	Top Depth:	4.50
Sample Number:	18	Base Depth:	4.70

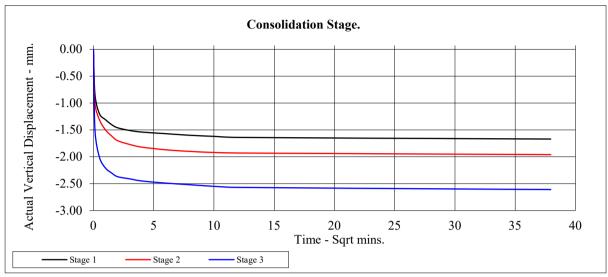


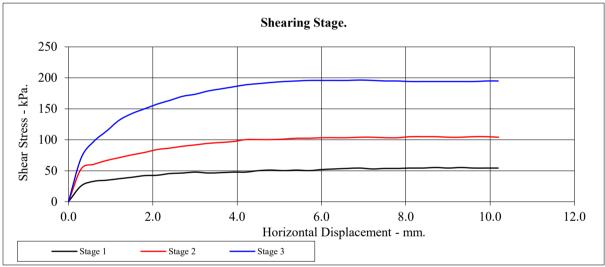
M1 J23a-J25

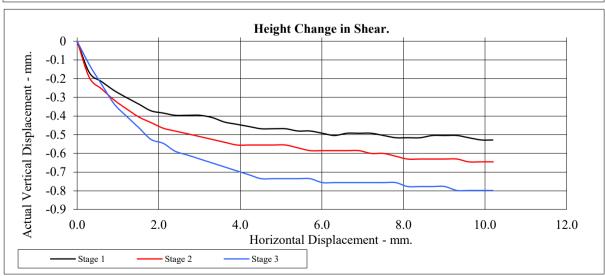
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1902N Top Depth:			8.00		
Sample Number:		9	Base Depth:		8.4	15
Sample Conditions:		Submerged	Sample Type D		Sample Type D	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:	Material test	ed passing 2mm sieve				
		using 2.5kg effort.				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions	S			
Height - mm:				20.02	20.02	20.02
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				19	19	19
Bulk Density - Mg/m3:				2.07	2.07	2.07
Dry Density - Mg/m3:				1.74	1.74	1.74
Voids Ratio:				0.522	0.522	0.522
Normal Pressure- kPa				80	160	320
		Consolidation Stag	ge			
Consolidated Height - mm:				18.35	18.06	17.41
		Shearing Stage				
Rate of Strain - mm/min				0.047	0.047	0.047
Displacement at peak shear	stress - mm			8.71	8.10	6.91
Peak shear Stress - kPa:				55	105	196
	Fi	nal Consolidated Con	ditions			
Moisture Content - %:				23	22	22
Bulk Density - Mg/m3:				2.26	2.30	2.38
Dry Density - Mg/m3:				1.84	1.88	1.95
		Peak				
Angle of Shearing Resistance	e:(0)				30	
Effective Cohesion - kPa:					11	

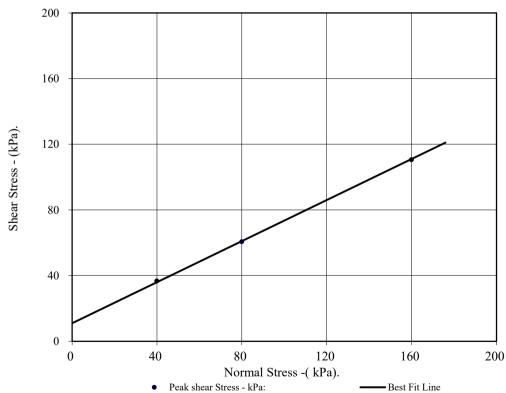



M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1902N	Top Depth:	8.00
Sample Number:	9	Base Depth:	8.45

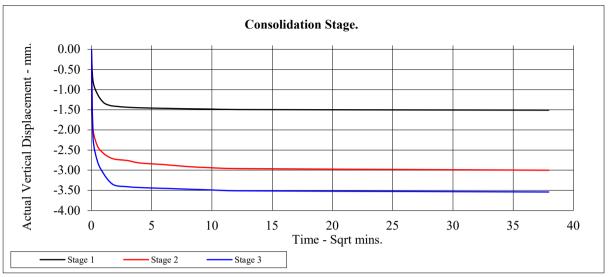


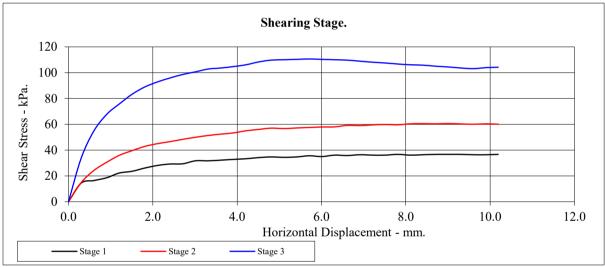
M1 J23a-J25

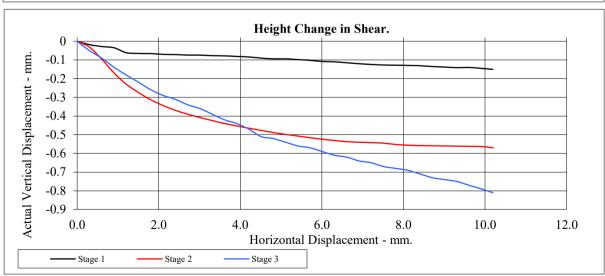
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

Hole Number:		BH1933S	Top Depth:	p Depth: 4.10		10
Sample Number:		21	Base Depth:		4.2	20
Sample Conditions:		Submerged	Sample Type D)	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:		ted passing 2mm sieve				
		using 2.5kg effort.				
Sample Description:	See summa	ry of soil descriptions.		1 .		
STAGE				1	2	3
		Initial Conditions		T.		
Height - mm:				20.02	20.02	20.02
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				12	12	12
Bulk Density - Mg/m3:				2.11	2.11	2.11
Dry Density - Mg/m3:				1.88	1.88	1.88
Voids Ratio:				0.408	0.408	0.408
Normal Pressure- kPa				40	80	160
		Consolidation Stag	e			
Consolidated Height - mm:				18.51	17.02	16.48
		Shearing Stage				
Rate of Strain - mm/min				0.056	0.056	0.056
Displacement at peak shear	stress - mm			7.81	9.01	5.71
Peak shear Stress - kPa:				37	61	111
	F	inal Consolidated Conc	litions		-	
Moisture Content - %:				21	19	18
Bulk Density - Mg/m3:				2.29	2.49	2.57
Dry Density - Mg/m3:				1.89	2.08	2.17
		Peak				
Angle of Shearing Resistance	e:(0)				32	
Effective Cohesion - kPa:					11	

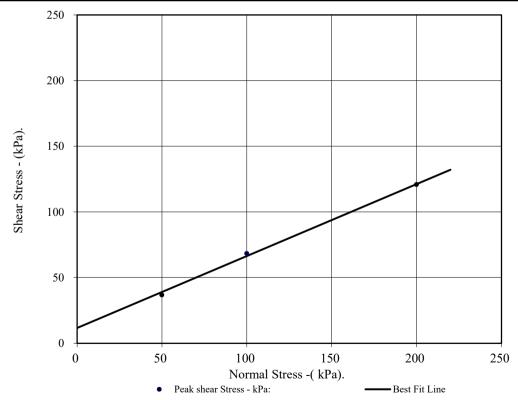



M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1933S	Top Depth:	4.10
Sample Number:	21	Base Depth:	4.20

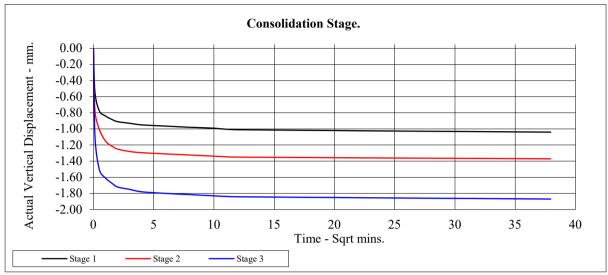


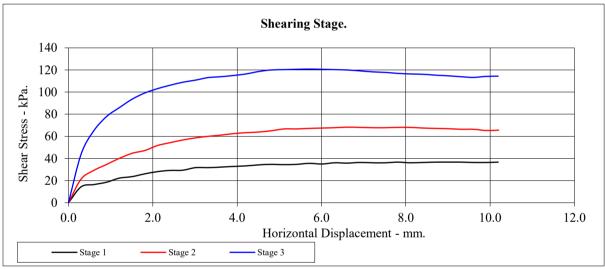
M1 J23a-J25

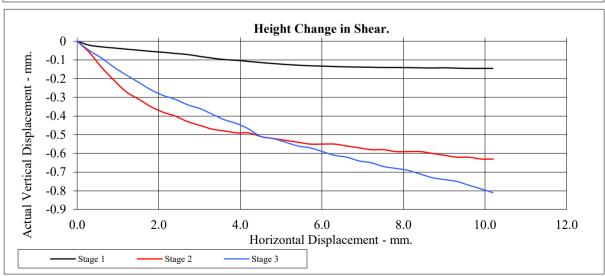
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

Hole Number:		BH1933S	Top Depth: 5.10		5.10		
Sample Number:		23	Base Depth:		5.20		
Sample Conditions:	Submerged Sample Type		Sample Type D		Sample Type)
Particle Density - Mg/m3:	2.65	Assumed	Remarks:				
Sample Preparation:		ed passing 2mm sieve using 2.5kg effort.					
Sample Description:		y of soil descriptions.					
STAGE				1	2	3	
		Initial Conditions					
Height - mm:				20.02	20.02	20.02	
Length - mm:				59.97	59.97	59.97	
Moisture Content - %:				14	14	14	
Bulk Density - Mg/m3:				2.06	2.06	2.06	
Dry Density - Mg/m3:				1.81	1.81	1.81	
Voids Ratio:				0.465	0.465	0.465	
Normal Pressure- kPa				50	100	200	
		Consolidation Stag	e				
Consolidated Height - mm:				18.98	18.65	18.15	
		Shearing Stage					
Rate of Strain - mm/min				0.056	0.056	0.056	
Displacement at peak shear	stress - mm			7.81	6.61	5.71	
Peak shear Stress - kPa:				37	68	121	
	Fi	nal Consolidated Cond	ditions				
Moisture Content - %:				19	19	18	
Bulk Density - Mg/m3:				2.18	2.21	2.28	
Dry Density - Mg/m3:				1.83	1.86	1.93	
	·	Peak	·				
Angle of Shearing Resistance	e:(0)				29		
Effective Cohesion - kPa:					12		

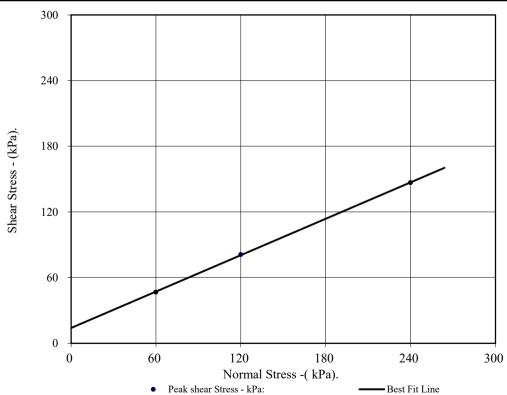



M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1933S	Top Depth:	5.10
Sample Number:	23	Base Depth:	5.20

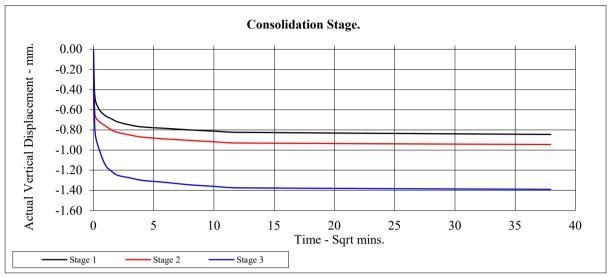


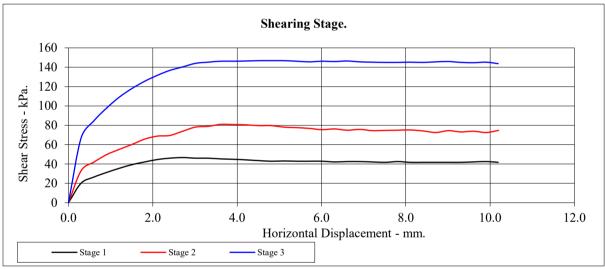
M1 J23a-J25

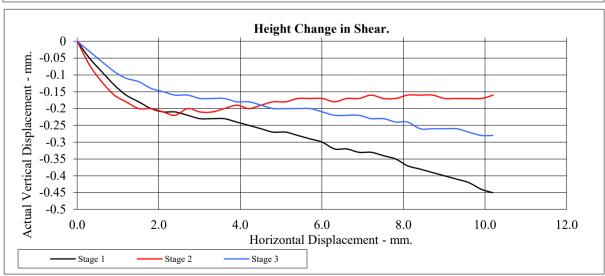
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

	BH1933S	Top Depth:	epth: 6.20		20	
	7	Base Depth:		6.6	55	
	Submerged	Sample Type D)		
2.65	Assumed	Remarks:				
•	•		1	2	3	
	Initial Conditions					
			20.02	20.02	20.02	
			59.97	59.97	59.97	
			12	12	12	
			2.16	2.16	2.16	
			1.93	1.93	1.93	
			0.375	0.375	0.375	
			60	120 240		
	Consolidation Stag	e				
			19.18	19.08	18.63	
	Shearing Stage					
			0.058	0.058	0.058	
stress - mm			2.71	3.61	4.51	
			47	81	147	
F	inal Consolidated Cond	litions				
			19	18	18	
			2.25	2.27	2.32	
			1.90	1.91	1.97	
	Peak					
e:(0)				29		
				14		
	Material tes Remoulded See summa	Submerged 2.65 Assumed Material tested passing 2mm sieve Remoulded using 2.5kg effort. See summary of soil descriptions. Initial Conditions Consolidation Stage Shearing Stage Stress - mm Final Consolidated Conditions	7 Base Depth Submerged Sample Ty 2.65 Assumed Material tested passing 2mm sieve Remoulded using 2.5kg effort. See summary of soil descriptions. Initial Conditions Consolidation Stage Shearing Stage Stress - mm Final Consolidated Conditions Peak	Table Submerged Sample Type	Total Consolidated Conditions Shearing Stage Sheari	

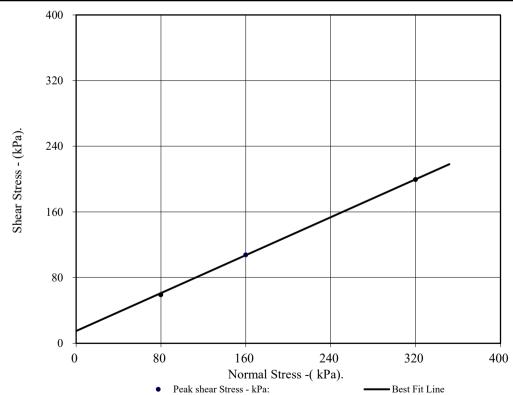



M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1933S	Top Depth:	6.20
Sample Number:	7	Base Depth:	6.65

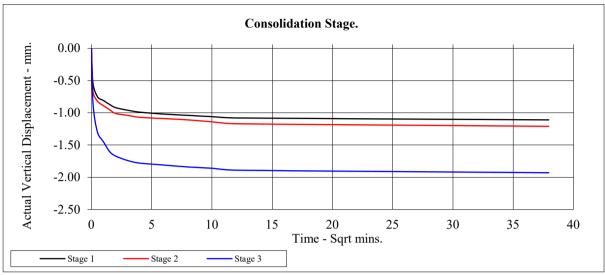


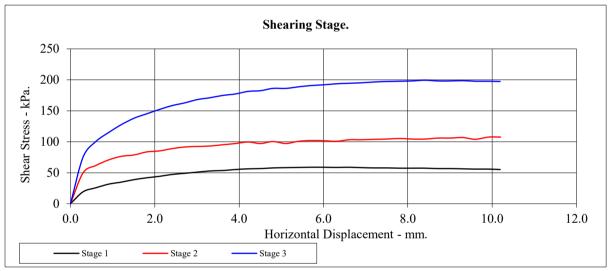
M1 J23a-J25

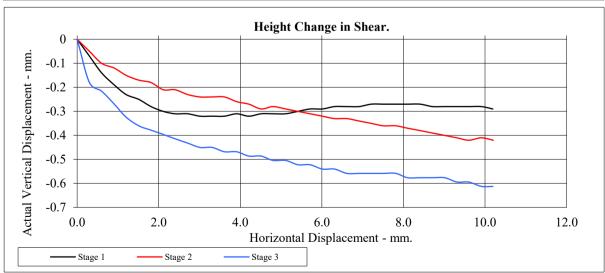
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

Hole Number:		BH1933S	Top Depth: 8.20			
Sample Number:		9	Base Depth: 8.65		55	
Sample Conditions:		Submerged	Sample Type D)	
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:		ed passing 2mm sieve using 2.5kg effort.				
Sample Description:		y of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				20.02	20.02	20.02
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				16	16	16
Bulk Density - Mg/m3:				2.10	2.10	2.10
Dry Density - Mg/m3:				1.81	1.81	1.81
Voids Ratio:				0.462	0.462	0.462
Normal Pressure- kPa				80	160	320
		Consolidation Stag	e			
Consolidated Height - mm:				18.91	18.81	18.09
		Shearing Stage				
Rate of Strain - mm/min				0.051	0.051	0.051
Displacement at peak shear	stress - mm			5.71	9.91	8.41
Peak shear Stress - kPa:				59	108	199
	Fi	nal Consolidated Conc	litions			
Moisture Content - %:				20	20	19
Bulk Density - Mg/m3:				2.23	2.24	2.33
Dry Density - Mg/m3:				1.85	1.87	1.95
		Peak				
Angle of Shearing Resistance	e:(0)				30	
Effective Cohesion - kPa:					15	

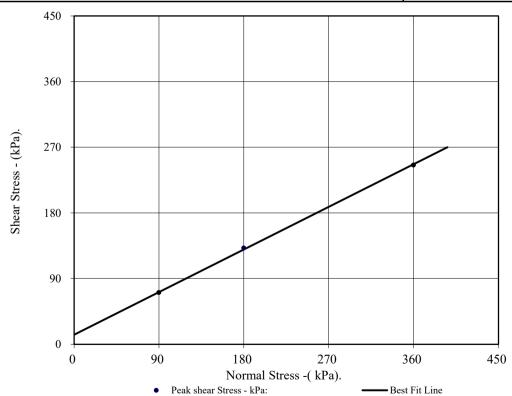



M1 J23a-J25


Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1933S	Top Depth:	8.20
Sample Number:	9	Base Depth:	8.65

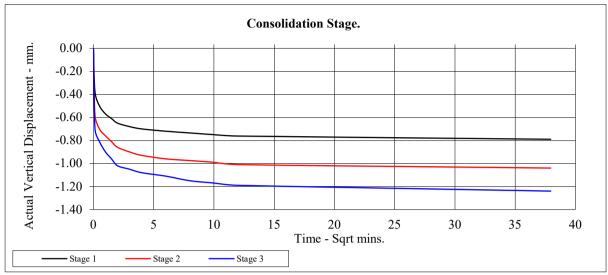


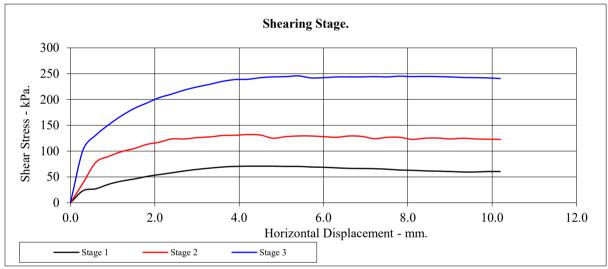
M1 J23a-J25

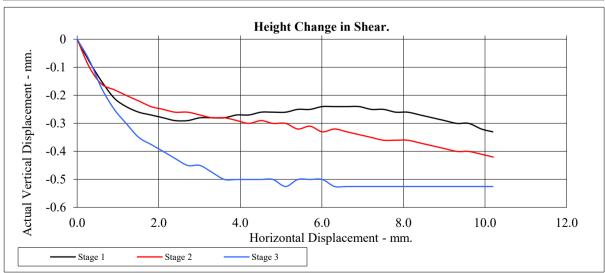
Contract No: PSL23/6016 Client Ref: G230600

BS1377:Part 7:1990 Clause 4

TT 1 NT 1		DI110226			0.0	
Hole Number:		BH1933S	Top Depth		9.2	
Sample Number:		10	Base Depth: 9.65			
Sample Conditions:		Submerged	Sample Ty	pe	Ι)
Particle Density - Mg/m3:	2.65	Assumed	Remarks:			
Sample Preparation:		ed passing 2mm sieve				
Sample I reparation.		using 2.5kg effort.				
Sample Description:	See summar	ry of soil descriptions.				
STAGE				1	2	3
		Initial Conditions				
Height - mm:				20.02	20.02	20.02
Length - mm:				59.97	59.97	59.97
Moisture Content - %:				12	12	12
Bulk Density - Mg/m3:				2.14	2.14	2.14
Dry Density - Mg/m3:				1.91	1.91	1.91
Voids Ratio:				0.389	0.389	0.389
Normal Pressure- kPa				90	180	360
		Consolidation Stag	e			
Consolidated Height - mm:				19.23	18.98	18.78
		Shearing Stage				
Rate of Strain - mm/min				0.063	0.063	0.063
Displacement at peak shear	stress - mm			4.21	4.21	5.41
Peak shear Stress - kPa:				71	132	246
	Fi	nal Consolidated Cond	ditions			
Moisture Content - %:				19	18	17
Bulk Density - Mg/m3:				2.22	2.25	2.28
Dry Density - Mg/m3:				1.87	1.91	1.94
		Peak				
Angle of Shearing Resistance	ce:(0)				33	
Effective Cohesion - kPa:					13	




M1 J23a-J25


Contract No:
PSL23/6016
Client Ref:
G230600

BS1377:Part 7:1990 Clause 4

Hole Number:	BH1933S	Top Depth:	9.20
Sample Number:	10	Base Depth:	9.65

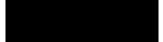
M1 J23a-J25

Contract No: PSL23/6016 Client Ref: G230600

Professional Soils Laboratory

5/7 Hexthorpe Road Hexthorpe Doncaster DN4 0AR

Analytical Test Report: L23/03926/PSL - 23-35886


Your Project Reference: PSL23/6016 M1 J23a-J25

Your Order Number: PSL Samples Received / Instructed: 28/07/2023 / 28/07/2023

 Report Issue Number:
 1
 Sample Tested:
 28/07 to 03/08/2023

Samples Analysed: 6 soil samples Report issued: 03/08/2023

Signed

James Gane

Analytical Services Manager

CTS Group

Notes

General

Please refer to Methodologies page for details pertaining to the analytical methods undertaken.

Samples will be retained for 14 days after issue of this report unless otherwise requested.

 $Moisture\ Content\ was\ determined\ in\ accordance\ with\ CTS\ method\ statement\ MS\ -\ CL\ -\ Sample\ Prep,\ oven\ dried\ at\ <30°C.$

Moisture Content is reported as a percentage of the dry mass of soil, this calculation is in accordance with BS1377, Part 2, 1990, Clause 3.2

Stone Content was determined in accordance with CTS method statement MS - CL - Sample Prep and refers to the percentage of stones retained on a 10mm BS test sieve.

Where specification limits are included these are for guidance only. Where a measured value has been highlighted this is not implying acceptance or failure and certainty of measurement values have

where speciments in minist are included these are for guidance only. Where a measured value has been ingringined this is not imprying acceptance or nature and tel tainty or measurement values have not been taken into account.

Uncertainty of measurement values are available on request.

Samples were supplied by customer, results apply to the samples as received.

Deviating Samples

On receipt samples are compared against our sample holding and handling protocols, where any deviations have been noted these are reported on our deviating sample page (if present)

Accreditation Ke

 ${\sf UKAS} = {\sf UKAS} \ {\sf Accreditation}, \ {\sf MCERTS} = {\sf MCERTS} \ {\sf Accreditation}, \ {\sf u} = {\sf Unaccredited}$

MCERTS Accreditation only covers the SAND, CLAY and LOAM matrices

Date of Issue: 26.07.23

Issued by: J. Gane

Issue No: 4 Rev No: 2

Leicester LE1 4DH

L23/03926/PSL - 23-35886

Project Reference - PSL23/6016 M1 J23a-J25

Analytical Test Results - Chemical Analysis

		307141	307142	307143	307144	307145	307146
		-	-	-	-	-	-
		BH1877N	BH1877N	BH1902N	BH1902N	BH1933N	BH1933N
		D	D	В	D	В	D
		13	2	12	13	`1	17
		0.50	1.20	1.20	1.40	1.20	1.90
		0.50	1.65	1.30	1.50	1.30	2.00
		-	-	-	-	-	-
		-	-	-	-	-	-
		Other	Clay	Sand	Other	Clay	Clay
Units	Accreditation						
(mg/l)	u	54	61	57	35	81	37
(%)	u	0.05	0.04	0.05	0.05	0.06	0.05
(%)	UKAS	0.04	0.03	0.08	0.02	0.02	0.02
pH Units	MCERTS	9.7	9.4	9.4	9.0	9.5	9.6
(mg/l)	u	23	210	30	51	93	120
(mg/l)	u	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
(mg/l)	u	2.5	2.5	7.5	8.6	7.9	6.0
(mg/l)	u	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	(mg/l) (%) (%) pH Units (mg/l) (mg/l) (mg/l)	(mg/l) u (%) u (%) UKAS pH Units MCERTS (mg/l) u (mg/l) u (mg/l) u	BH1877N D 13 0.50 0.50 0.50 -	BH1877N BH1877N D	BH1877N BH1877N BH1902N	BH1877N BH1877N BH1902N BH1902N	BH1877N BH1877N BH1902N BH1902N BH1933N

7 - 11 Harding Street Leicester LE1 4DH

L23/03926/PSL - 23-35886

Project Reference - PSL23/6016 M1 J23a-J25

Sample Descriptions

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Description	Moisture Content (%)	Stone Content (%)	Passing 2mm test sieve (%)
307141		BH1877N	D	13	Grey crushed rock	9.6	< 0.1	45
307142	-	BH1877N	D	2	Brown slightly gravelly silty clay	8.7	< 0.1	93
307143	-	BH1902N	В	12	Brown very gravelly silty sand	11	< 0.1	37
307144		BH1902N	D	13	Greyish brown slightly clayey silt	10	< 0.1	49
307145	-	BH1933N	В	`1	Brown slightly gravelly silty clay	9.7	< 0.1	29
307146	-	BH1933N	D	17	Brown gravelly silty clay	11	< 0.1	37

L23/03926/PSL - 23-35886

Project Reference - PSL23/6016 M1 J23a-J25

Sample Comments

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	Client Sample Number	Comments
307141	-	BH1877N	D	13	
307142	-	BH1877N	D	2	
307143	-	BH1902N	В	12	
307144	-	BH1902N	D	13	
307145	-	BH1933N	В	`1	
307146	-	BH1933N	D	17	

L23/03926/PSL - 23-35886

Project Reference - PSL23/6016 M1 J23a-J25

Analysis Methodologies

Test Code	Test Name / Reference	Sample condition for analysis	Sample Preperation	Test Details
ANIONSS	MS - CL - Anions by Aquakem (2:1Extract)	Oven dried	Passing 2mm test sieve	Determination of Anions (inc Sulphate, chloride etc.) in soils by Aquakem. Analysis is based on a 2:1 water to soil extraction ratio
PHS	MS - CL - pH in Soils	As received	Passing 10mm test sieve	Determination of pH in soils using a pH probe (using a 1:3 soil to water extraction)
ASSO4S	MS - CL - Acid Soluble Sulphate	Oven Dried	Passing 2mm test sieve	Determination of total sulphate in soils by acid extraction followed by ICP analysis
SAMPLEPREP	MS - CL - Sample Preparation	-	-	Preparation of samples (including determination of moisture content) to allow for subsequent analysis
1377TS-ELT	BS1377 Total Sulphur Content by HTC	Oven dried	BS1377 : Part 1 : 2016	Total Sulphur Content testing of Soil in accordance with BS 1377 : Part 3 : 2018 + A1 : 2021 Clause 7.10 (using Eltra CS-800 Analyser)

- 11 Harding Stree Leicester LE1 4DF

L23/03926/PSL - 23-35886

Project Reference - PSL23/6016 M1 J23a-J25

Sample Deviations

Deviations are listed below against each sample and associated test method, where deviation(s) are noted it means data may not be representative of the sample at the time of sampling and it is possible that results provided may be compromised.

Observations on receipt

- A No date of sampling provided
- C Received in inappropriate container
- H Contains headspace
- T Temperature on receipt exceeds storage temperature
- R Date of sampling to receipt insufficient to allow analysis to be completed without deviation, Please note this is only a deviation if 'X' is also recorded against the sample

Observations whist in laboratory

X - Exceeds sampling to extraction or analysis timescales

Lab Reference	Client Sample ID	Client Sample Location	Client Sample Type	e Client Sample Test Number	Deviations
307141	-	BH1877N	D	13	A
307142	-	BH1877N	D	2	A
307143	-	BH1902N	В	12	Α
307144	-	BH1902N	D	13	Α
307145	-	BH1933N	В	`1	A
307146	-	BH1933N	D	17	A

Appendix D: Core & Dynamic Sample Photographs

Rev 002



